Text Size
Domenica, Novembre 19, 2017
Scienza e Futuro Un nuovo stato per la superconduzione

La straordinaria resistenza della tela del ragno che resiste agli uragani

La resistenza delle tele intessute dai ragni ha sempre affascinato l'uomo, che ne ha cercato il segreto della robustezza nella composizione chimica della  seta. Da sola, tuttavia, questa non può spi...

Trovato un meteorite da Marte di 2,4 miliardi di anni, i dati pubblici sulle tempeste solari e la soluzione al mistero della polvere cosmica

Alcuni dei vulcani più longevi del Sistema solare si trovano su Marte. L’ipotesi, già presa in considerazione dai ricercatori impegnati in questo tipo di studi, è stata confermata grazie all’anali...

Mistero Satelliti Pioneer anni '70

 Sono state lanciate agli inizi degli anni '70. E tutti si aspettavano che le sonde Pioneer avrebbero rivoluzionato le nostre conoscenze sul sistema solare e oltre, lanciandosi nel cuore del misterios...

119 persone scomparse nel nulla, un villaggio trovato deserto. Il mistero della colonia di Roanoke

Tutto cominciò nel 1584 quando Sir Walter Raleigh reclutò due esperti uomini di mare, Philip Amadas e Arthur Barlowe, per inviarli nel Nuovo Mondo. Il loro incarico consisteva nell’individuare un ...

La merce del futuro verrà consegnata tramite droni, ora anche Google sperimenta un proprio modello

NEW YORK - Google sfida Amazon nella battaglia per i droni. Mountain View annuncia di essere impegnata a sviluppare un sistema di droni per le consegne di prodotti. I primi test sono stati condot...

Il nuovo avvistamento filmato di un Bigfoot a Washington

Una donna afferma di aver visto il Bigfoot, leggendaria creatura scimmiesca che dovrebbe vivere nelle foreste dell'America Settentrionale. La signora, di cui si sa solo che si chiama Samatha, si ...

  • La straordinaria resistenza della tela del ragno che resiste agli uragani


    Publish In: Scienza e Futuro
  • Trovato un meteorite da Marte di 2,4 miliardi di anni, i dati pubblici sulle tempeste solari e la soluzione al mistero della polvere cosmica


    Publish In: News Astronomia
  • Mistero Satelliti Pioneer anni '70


    Publish In: Tecnologia Spaziale
  • 119 persone scomparse nel nulla, un villaggio trovato deserto. Il mistero della colonia di Roanoke


    Publish In: Uomini e Misteri
  • La merce del futuro verrà consegnata tramite droni, ora anche Google sperimenta un proprio modello


    Publish In: Scienza e Futuro
  • Il nuovo avvistamento filmato di un Bigfoot a Washington


    Publish In: Uomini e Misteri

Un nuovo stato per la superconduzione

 

La superconduttività può coesistere con un campo magnetico intenso. Lo ha dimostrato uno studio pubblicato su “Nature Physics” a firma di Vesna Mitrovic della Brown University e colleghi. Il risultato conferma una previsione teorica formulata nel 1964 e finora sfuggita alla verifica sperimentale, ampliando le conoscenze su questo tipo di fenomeni.

La superconduttività è la capacità di alcuni materiali di condurre, in opportune condizioni, corrente elettrica senza resistenza. Dal punto di vista microscopico dipende dalla formazione di coppie di elettroni note come coppie di Cooper. Una delle caratteristiche di queste coppie è che in ciascuna di esse gli spin degli elettroni, che possiamo immaginare come gli assi di rotazione intrinseca, sono orientati in direzioni tra loro opposte, e indicate convenzionalmente con i termini "su" e "giù". Normalmente, in un materiale superconduttore gli elettroni con spin “su” sono tanti quanti gli elettroni con spin “giù”, così in media, ogni elettrone può trovare un partner adatto a formare una coppia di Cooper.

Questa condizione favorevole alla formazione di coppie di Cooper si perde quando il materiale superconduttore è immerso in un campo magnetico, perché gli spin tendono a orientarsi lungo le linee del campo.

Ma che cosa succede quando il numero di elettroni con un determinato spin, per esempio "su", è sensibilmente più elevato rispetto a al numero di elettroni con spin opposto? Si può instaurare ancora uno stato superconduttore? E di che tipo?

Un nuovo stato per la superconduzione

A livello microscopico, il fenomeno della superconduttività si deve alle coppie di Cooper, ciascune delle quali è formata da due elettroni con spin tra loro opposto (frecce rosse e blu). La presenza di un campo magnetico esterno perturba la formazione delle coppie. Ma secondo l'effetto FFLO, in opportune condizioni, gli elettroni spaiati si riuniscono in bande in cui la conduzione senza resistenza è ancora possibile (frecce viola).

La questione è stata affrontata nel 1964 da Peter Fulde, Richard Ferrell, Anatoly Larkin e Yuri Ovchinnikov, in un lavoro teorico in cui fu previsto che la superconduttività può emergere in alcuni tipi di materiali anche in presenza di un campo magnetico esterno.

La teoria prevedere che gli elettroni senza partner possano raccogliersi in bande o fasce discrete lungo il materiale superconduttore. In queste bande, la conduzione di corrente rimarrebbe normale, mentre il resto del materiale sarebbe superconduttore. Questa superconduttività "modulata" prende il nome di fase FFLO, dalle iniziali dei quattro fisici che l'hanno prevista.

Per studiare il fenomeno, Mitrovic e colleghi hanno usato un superconduttore organico composto di strati ultrasottili, esattamente il tipo di materiale che dovrebbe mostrare il comportamento previsto dalla fase FFLO. Gli autori hanno studiato il comportamento del superconduttore sottoposto a un intenso campo magnetico, e hanno scoperto zone del materiale in cui si riunivano gli elettroni non accoppiati, dotati tutti dello stesso stato di spin e per questo definiti polarizzati.

“Questi elettroni 'polarizzati' si comportano come piccole particelle costrette a stare un una scatola”, spiega Mitrovic. “L'aspetto interessante è che in queste condizioni, si formano particolari stati che consentono il trasporto di supercorrenti attraverso regioni non superconduttrici: la corrente può scorrere senza resistenza attraverso tutto il materiale in questo speciale stato di superconduzione”.

In particolare un'intuizione ha consentito ai ricercatori di arrivare a questa prima verifica sperimentale dell'effetto FFLO: il sistema doveva essere tenuto a temperatura più elevata rispetto a quella ritenuta adatta.

“Normalmente, per osservare stati quantistici si cerca mantenere il sistema il più freddo possibile, per limitare il moto termico delle particelle”, conclude Mitrovic. Ma aumentando la temperatura, conclude la ricercatrice, è stata incrementata la sensibilità della sonda usata per rilevare gli stati di superconduzione previsti per teorica cinquant'anni fa.


blog comments powered by Disqus

Secondo te prima della nostra c'è stata un altra civiltà?

Wikipedia Affiliate Button
jeux gratuit