
This paper is included in the Proceedings of the
2015 USENIX Annual Technical Conference (USENIC ATC ’15).

July 8–10, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-225

Open access to the Proceedings of the
2015 USENIX Annual Technical Conference
(USENIX ATC ’15) is sponsored by USENIX.

WALDIO: Eliminating the Filesystem Journaling in
Resolving the Journaling of Journal Anomaly

Wongun Lee, Keonwoo Lee, and Hankeun Son, Hanyang University;
Wook-Hee Kim and Beomseok Nam, Ulsan National Institute of Science and Technology;

Youjip Won, Hanyang University

https://www.usenix.org/conference/atc15/technical-session/presentation/lee_wongun

USENIX Association 2015 USENIX Annual Technical Conference 235

WALDIO: Eliminating the Filesystem Journaling in Resolving the Journaling
of Journal Anomaly

Wongun Lee∗, Keonwoo Lee∗, Hankeun Son∗, Wook-Hee Kim†, Beomseok Nam†and Youjip Won∗
∗Dept. of Computer Software, Hanyang University, Seoul, Korea

†Ulsan National Institute of Science and Technology, Ulsan, Korea

Abstract

This work is dedicated to resolve the Journaling of Jour-
nal Anomaly in Android IO stack. We orchestrate SQLite
and EXT4 filesystem so that SQLite’s file-backed jour-
naling activity can dispense with the expensive filesys-
tem intervention, the journaling, without compromising
the file integrity under unexpected filesystem failure. In
storing the logs, we exploit the direct IO to suppress the
filesystem interference. This work consists of three key
ingredients: (i) Preallocation with Explicit Journaling,
(ii) Header Embedding, and (iii) Group Synchronization.
Preallocation with Explicit Journaling eliminates the
filesystem journaling properly protecting the file meta-
data against the unexpected system crash. We redesign
the SQLite B-tree structure with Header Embedding to
make it direct IO compatible and block IO friendly. With
Group Synch, we minimize the synchronization over-
head of direct IO and make the SQLite operation NAND
Flash friendly. Combining the three technical ingredi-
ents, we develop a new journal mode in SQLite, the
WALDIO. We implement it on the commercially available
smartphone. WALDIO mode achieves 5.1× performance
(insert/sec) against WAL mode which is the fastest jour-
naling mode in SQLite. It yields 2.7× performance (in-
serts/sec) against the LS-MVBT, the fastest SQLite jour-
naling mode known to public. WALDIO mode achieves
7.4× performance (insert/sec) against WAL mode when it
is relieved from the overhead of explicitly synchronizing
individual log-commit operations. WALDIO mode reduces
the IO volume to 1/6 compared against the WAL mode.

1 Introduction

Smart device, e.g. smartphone, smart TV, and smart pad,
firmly position themselves as mainstream computing de-
vice. The mobile DRAM and mobile NAND Flash sales
for smart device account for 30% [41] and 40% [8] of the
world DRAM sales and NAND Flash sales, respectively.

In the smartphone, the storage subsystem is arguably the
main governing factor for performance [23].

Android IO stack suffers from the excessive IO be-
havior. Sending two character message, ’Hi’, through
the text messaging application yields at least 48 KByte
of writes to the storage device. This anomalous am-
plification is due to the uncoordinated interaction be-
tween SQLite and EXT4 filesystem. The broken re-
lationship between the EXT4 filesystem and SQLite
is caused by the fact that SQLite synchronizes each
change in the database file or in rollback journal file
through fsync()/fdatasync() and that each call to
fsync()/fdatasync() triggers the bulky EXT4 jour-
nal module to log the updated metadata. This phe-
nomenon is called Journaling of Journal Anomaly [19].

There have been a number of efforts to mitigate the
Journaling of Journal anomaly [19, 27, 35, 25, 38]. These
works either modify SQLite to reduce the number of
fsync() calls [19, 27] or modify the filesystem to mit-
igate the overhead of a single fsync() [19, 35, 25, 38].
While the overheads may vary, these works still need to
journal the metadata of the SQLite journal file for each
database transaction.

In this work, we dedicate our effort in resolving Jour-
naling of Journal anomaly. We orchestrate EXT4 filesys-
tem and SQLite so that SQLite can dispense with the ex-
pensive filesystem journaling in maintaining its journal
file without compromising the file integrity under the un-
expected system failure. We successfully eliminate the
root cause for Journaling of Journal anomaly, the filesys-
tem journaling. In our optimization effort, SQLite ex-
ploits ”direct IO” in updating its journal file. Our work
consists of three key technical ingredients: (i) Block Pre-
allocation with Explicit Journaling, (ii) Header Embed-
ding and (iii) Group Synch.

• Preallocation with Explicit Journaling: We pre-
allocate the data blocks to the SQLite journal file
and explicitly journal the file metadata. The subse-

236 2015 USENIX Annual Technical Conference USENIX Association

quent direct IO based log-commit operation does
not incur any metadata update and the filesystem
journaling can be eliminated. Via explicit journal-
ing, the SQLite journal file is protected by the un-
derlying filesystem against the unexpected system
failure.

• Header Embedding: We develop Header Embed-
ding and re-design the journal file structure. With
Header Embedding, the fragmented SQLite journal
file structure becomes 4 KByte aligned. The Header
Embedding makes the SQLite journaling operation
direct IO compatible and block IO friendly.

• Group Synchronization: With Group Synchro-
nization (Group Synch in short), we aggregate mul-
tiple logs and to synchronize them as a single unit.
Group synch effectively reduces the overhead of
synchronizing the direct IO based log-commit op-
eration to the storage surface. It significantly im-
proves the performance via aligning the IO with
NAND Flash page size.

Combining all these techniques, we develop a new
SQLite journal mode, the WALDIO. We implement the
WALDIO mode in commercially available smartphone
model (Samsung Galaxy S5). WALDIO mode with per-
sistent direct IO exhibits 5.1× performance (insert/sec)
and 2.7× performance (insert/sec) against WAL mode
which is the fastest stock SQLite journal mode and
LS-MVBT [27] mode which is the fastest SQLite jour-
nal mode known to public, respectively. Smartphone
with non-removable battery can potentially make the di-
rect IO a persistent operation for practical purpose, in
which case WALDIO yields 7.4× performance (insert/sec)
against WAL mode and 4.0× performance (insert/sec)
against LS-MVBT mode, respectively. The improvement
in update and delete follow the similar trend. WALDIO
mode reduces the write volume of SQLite to 1/6 com-
pared to WAL mode.

2 Background

2.1 SQLite
SQLite is a serverless embedded DBMS. SQLite is the
way of maintaining the records in various smartphone
platforms, e.g. Android, iOS, Tizen and etc. and is
widely used as the embedded DBMS for desktop applica-
tions, e.g. Chrome web browser, Firefox, Adobe Acrobat
reader, Skype [40].

SQLite adopts B-tree for its database. The size of the
B-tree node is power of two ranging from 512 Byte to
64 KByte. Default node size is 1024 Byte. Fig. 1 illus-
trates the leaf node structure. The B-tree node consists of
the page header, the index array and the cell array. The

page header resides at the beginning of the node. Next
to the page header, there exists an index array. Each in-
dex points the variable size record. The record, which is
called cell in SQLite, is allocated from the end of the
node. The index array and the records grow in the oppo-
site direction. When a cell is deleted, the space occupied
by the deleted record is marked as dead. The page header
maintains the number of the deleted cells. The deleted
cells are weaved together as a linked list. SQLite allo-
cates a new node when there is no more free space in the
page or the deleted area.

Figure 1: SQLite B-tree node structure, node size = 4
KByte, PH: Page header

Different from the large scale DBMS [39, 29, 10],
SQLite does not have its own storage management mod-
ule. SQLite heavily relies on the underlying filesys-
tem to persistently manage its information and to pro-
tect it against unexpected system failure. SQLite uses
file to maintain the log for crash recovery. For trans-
actional guarantee, SQLite explicitly synchronizes, i.e.
fdatasync(), the log file and the database file after
committing the log or after updating the database, re-
spectively.

SQLite provides six journal modes: DELETE,
TRUNCATE, PERSIST, WAL, MEMORY and OFF. As the
name suggests, MEMORY mode and OFF mode maintain
the journal information in memory and does not main-
tain the journal information, respectively. The remaining
four journal modes can be categorized into two: rollback
journal and rollforward journal. DELETE, TRUNCATE and
PERSIST modes are for rollback and WAL mode is for
rollforward journaling, respectively.

In the rollback journal mode, the SQLite operation,
e.g. INSERT, DELETE and UPDATE, consists of three
phases: (i) logging, (ii) database update and (iii) log re-
set. The three SQLite journal modes in rollback jour-
naling share the first and the second phase. In logging
phase, SQLite updates the journal header and logs the
old database pages (undo log) in the journal file. In
database update phase, the updated database pages are
written to the database file. The objective of the log-reset
phase is to mark that a given transaction has success-
fully completed. In the third phase (log reset), there is

2

USENIX Association 2015 USENIX Annual Technical Conference 237

minor difference among the three SQLite journal modes.
In DELETE mode, SQLite deletes the journal file. In
TRUNCATE mode, SQLite truncates the journal file to 0.
In PERSIST mode, SQLite puts special mark at the be-
ginning of the journal file to denote that the transaction
has completed. While the difference is subtle, it bears the
profound implication on the filesystem journaling over-
head. In DELETE mode, SQLite always needs to create
the new journal file in the logging phase. Creating a file
accompanies the large amount of metadata updates; the
directory block, inode table, block bitmap and etc. All
these metadata need to be journaled by the filesystem
when fsync()/fdatasync() is called.
TRUNCATE mode retains the inode and deallocates

the file blocks. Since TRUNCATE mode does not create
the journal file, it yields smaller amount of metadata
update compared to DELETE mode. As a result, when
fsync()/fdatasync() is called in the logging phase,
it yields smaller amount of EXT4 journal IO compared
to DELETE mode.
PERSIST mode recycles not only the inode but also

the file blocks. In PERSIST mode, the ”logging” up-
dates only the time related fields in the file metadata,
e.g. mtime. Compared against TRUNCATE mode, the
PERSIST mode further reduces the amount of metadata
to be fsync()’ed in the logging phase. Via replacing the
fsync() with fdatasync(), PERSIST mode achieves
more reduction on the amount of metadata journaled in
the ”logging” phase [19].

In WAL mode, SQLite appends the header and a set
of updated database pages to the log file (redo log).
We call this file as WAL file for convenience’s sake.
When the database table is closed or the number of com-
mitted database pages in WAL file reaches the prede-
fined maximum, the committed database pages in WAL
file are checkpointed to the database file. SQLite pro-
vides two options to synchronize the committed logs:
Full Sync and Normal Sync. In Full Sync, SQLite
calls fsync()/fdatasync() after each log-commit to
persistently store the logs. In Normal Sync, SQLite
calls fsync()/fdatasync() after each checkpoint. In
Normal Sync option, the committed logs reside in the
buffer cache till they are either checkpointed by SQLite
or flushed by OS. The logs in the buffer cache are subject
to loss in case of unexpected system failure, e.g. power
failure, or operating system crash [6] and the durability
of a transaction can be compromised. The default option
is Full Sync.

2.2 EXT4 Journaling
EXT4 filesystem provides three journal modes; Journal,
Ordered and Writeback. The Ordered mode is the most
widely used one. In Ordered mode, the filesystem logs

only the updated metadata. When logging the metadata,
the filesystem flushes all the data blocks related to the
updated metadata and then it logs the updated meta-
data. EXT4 journaling module is bulky. An EXT4 jour-
nal transaction consists of a 4 KByte journal header, a set
of 4 KByte journal records each of which corresponds to
the updated filesystem block and a 4 KByte journal com-
mit block. EXT4 journaling module is activated either on
regular basis, e.g. in 5 sec interval, or via an explicit call
to fsync() or fdatasync().

EXT4 journaling module functions efficiently when it
is triggered in sufficiently large interval, e.g. in every 5
sec. With the large interval, the journal descriptor and
the journal commit block pair carries sufficiently large
amount of journal records in a single journal transaction.
The overhead of journal descriptor and journal commit
block is insignificant. SQLite drives the EXT4 filesys-
tem in a way which, we carefully believe, has not been
foreseen before and brings unacceptable inefficiency in
Android IO stack. SQLite calls fdatasync() very fre-
quently, typically after very few number of 4 KByte
writes [19]. In fdatasync(), appending a 4 KByte
block to a file accompanies at least 12 KByte of EXT4
journal writes.

3 Analysis of Journaling of Journal
Anomaly

We overhaul the interaction between the SQLite and
EXT4. SQLite inserts one 100 Byte record into an empty
database table and we examine the block level IO be-
havior of the underlying filesystem. We use open-source
benchmark, Mobibench [31] and MOST [18] to generate
the workload and to analyze the IO trace, respectively.
We examine the IO behavior under five SQLite journal
modes: OFF, WAL, DELETE, TRUNCATE, and PERSIST.

Fig. 2 illustrates the block access patterns of SQL
INSERT operations under five SQLite journaling modes.
We mark SQLite journal related IO’s and SQLite
database related IO’s with ’+’ and ’x’, respectively. Each
’+’ and ’x’ mark is annotated with the respective IO size
in KByte unit. In the X-Y plane, the EXT4 journal re-
gion is marked with the light-grey background. The ’+’
marked IO’s in the light-grey region correspond to the
EXT4 journal writes for the SQLite journal file; Jour-
naling of Journal overhead. We annotate each write in
EXT4 data region with its type; the writes to journal file
can be for journal header (H) or for journal record (P),
respectively.

In OFF mode, SQLite synchronizes only the database
file and does not accompany any SQLite journaling re-
lated IO (Fig. 2(a)). EXT4 filesystem writes two data
blocks for database file and journals the respective meta-
data. The total 3 blocks are written in EXT4 journal re-

3

238 2015 USENIX Annual Technical Conference USENIX Association

24

26

28

30

32

34

36

4 5 6 7 8

se
c

to
r

A
d

d
re

ss
(x

1
0

5
)

Time(msec)

(a) OFF mode : INSERT

24

26

28

30

32

34

36

4 6 8 10 12

se
c

to
r

A
d

d
re

ss
(x

1
0

5
)

Time(msec)

(b) WAL mode : INSERT

24

26

28

30

32

34

36

0 10 20 30

se
c

to
r

A
d

d
re

ss
(x

1
0

5
)

Time(msec)

(c) DELETE mode: INSERT

24

26

28

30

32

34

36

3 9 15 21

se
c

to
r

A
d

d
re

ss
(x

1
0

5
)

Time(msec)

(d) TRUNCATE mode : INSERT

24

26

28

30

32

34

36

0 5 10 15 20 25 30

se
c

to
r

A
d

d
re

ss
(x

1
0

5
)

Time(msec)

(e) PERSIST mode : INSERT

Figure 2: SQLite Block IO pattern (H: Journal Header or WAL Frame Header, P: DB page)

gion: one page of journal descriptor, one page for up-
dated metadata and one page of journal commit mark.

In WAL mode (Fig. 2(b)), SQLite writes the redo
log to WAL file and synchronizes the WAL file via
fdatasync(). As a result of calling fdatasync(),
EXT4 journals the updated metadata of the journal file,
separately synchronizing the journal descriptor and jour-
nal commit mark. Since the committed database pages
are checkpointed to the database file in batched manner,
we do not observe any IO on the database file in Fig. 2(b).

Fig. 2(c), Fig. 2(d), and Fig. 2(e) illustrate block
access patterns for rollback journal modes; DELETE,
TRUNCATE and PERSIST, respectively. The rollback jour-
nal modes synchronize both the rollback journal file and
the database file after they are updated. Compared to WAL
mode, the filesystem journaling overhead doubles. In all
these rollback journal modes (Fig. 2(c), Fig. 2(d), and
Fig. 2(e)), the first and the second fsync() are for syn-
chronizing the rollback journal file (phase 1: logging).
The third fsync() is for synchronizing the updated
database file (phase 2: update the database). PERSIST
mode carries an additional fsync() to persistently store
the reset mark in the log file (phase 3: log-reset).

The Journaling of Journal overhead for DELETE,
TRUNCATE and PERSIST mode corresponds to 44 KByte,
36 KByte and 40 KByte, respectively. These differences
are due to the way in which the SQLite journal mode re-
sets the log file. The WAL mode yields the smallest JOJ
overhead, 20 KByte.

Table 1 summarizes the traffic volume for five SQLite
journal modes. In all SQLite journal modes, the filesys-
tem intervention is overly excessive; the filesystem jour-

IO type (Write, KB)
Mode Data Journal JOJ Total
OFF 8 12 0 20
WAL 8 20 20 28
DELETE 24 56 44 80
TRUNCATE 24 48 36 72
PERSIST 28 52 40 80

Table 1: IO Volume in inserting 100 Byte (DATA: EXT4
Data region, Journal: EXT4 Journal region, JOJ: EXT4
journal writes for SQLite journal file, and Total)

naling activity accounts for more than 50% of the IO.
While WAL mode yields the smallest amount of total IO,
it is still subject to extreme IO inefficiency. In WAL, the
filesystem journaling accounts for 70% of the entire IO
traffic (20 KByte out of 28 KByte). WAL mode yields the
smallest IO overhead and in the mean time, bears the
largest room for improvement when the filesystem jour-
naling overhead is eliminated.

4 Direct IO and SQLite

4.1 Direct IO
Direct IO is a filesystem feature which allows the user to
read and to write the data directly from and to the storage
device. In direct IO, the data block is immediately written
to the storage device bypassing the page cache. Direct IO
based write, DIO write for short, returns when the data
blocks reach the writeback cache of the storage device.

4

USENIX Association 2015 USENIX Annual Technical Conference 239

DBMS [13, 3] and Virtual Machine Monitor [28, 33] use
direct IO to manage the storage device with minimum
file system intervention.

SQLite maintains the logs in a journal file. It
uses buffered write in storing the log to the jour-
nal file and explicitly synchronizes the journal file via
fsync()/fdatasync() for durability guarantee. Flush-
ing the logs in the buffer cache can accompany the ex-
pensive filesystem journaling. If SQLite uses direct IO to
write the log to the journal file, it can save the filesystem
from expensive filesystem journaling activity.

4.2 Writing a Block to the Storage
We examine the three ways to write a block to the storage
device: (i) write() followed by fsync(), (ii) write()
followed by fdatasync() and (iii) DIO write().
These approaches differ in a way in which the filesys-
tem handles the updated metadata. In fsync(), EXT4
filesystem journals the updated metadata for the respec-
tive file. In fdatasync(), EXT4 filesystem journals the
updated metadata only when the file block is allocated
(or deallocated). DIO write by itself does not entail any
filesystem journaling. We can categorize the write opera-
tions into two types: allocating write and non-allocating
write. Allocating write is a write system call which re-
quires an allocation of a new filesystem block. Allocat-
ing write updates the various metadata, e.g. the block
bitmap, inode table, intermediate node block and etc.
Non-allocating write does not entail the allocation of a
file block. It updates only access time related fields and
possibly the initialized flag in the metadata.

write()

write()

fsync()
fdatasync()

(a) Allocating Write

write()write()

fsync() fdsync()

write()

(b) Non-Allocating Write

Figure 3: Writing a block with fsync(), fdatasync()
and direct IO

Fig. 3(a) and Fig. 3(b) schematically illustrate the IO
paths of three different ways of writing 4 KByte to the
storage device, for allocating and non-allocating write,
respectively. For both allocating and non-allocating
write, fsync() journals the updated metadata. In allo-
cating write, fdatasync() exhibits the identical behav-
ior as fsync(). In non-allocating write, fdatasync()

does not journal any metadata. For both allocating and
non-allocating write, direct IO does not accompany the
filesystem journaling. In direct IO, the updated metadata,
if there is any, can be subject to loss.

SQLite provides two options to synchronize the
database (or journal) file: via fsync() and via
fdatasync(). Android platform legitimately uses
fdatasync() in SQLite to reduce the filesystem jour-
naling overhead. Overhauling the IO behavior, we find
an important caveat to resolve the Journaling of Jour-
nal anomaly, the EXT4 journaling overhead. In non-
allocating write, ”DIO write” yields the same behavior,
though not precisely identical, with the ”buffered write
followed by fdatasync()” from the filesystem journal-
ing’s point of view; in delivering the data blocks to the
storage, they both are free from the filesystem journal-
ing.

5 Eliminating Filesystem Journaling in
Android IO

We propose to use direct IO based write operation for
committing the logs to the SQLite journal file so that the
logs are directly written to the storage and the activity
of committing the logs does not accompany any updates
in the page cache entries; neither the data block nor the
metadata. With this approach, the synchronization activ-
ity of SQLite, e.g. fdatasync(), does not trigger any
filesystem journaling related IO. Our scheme consists of
three key technical ingredients: (i) Preallocation with Ex-
plicit Journaling, (ii) Header Embedding, and (iii) Group
Synch. Combining all these, we develop a new SQLite
journal mode, WALDIO.

5.1 Preallocation with Explicit Journaling
The prime concern is to eliminate the interference of the
EXT4 journaling in the log-commit operation and at the
same time to protect the metadata of the journal file. We
develop Preallocation with Explicit Journaling, where
(i) we preallocate a certain amount of initialized blocks
for a WAL file and (ii) journal the metadata for the cre-
ated WAL file via explicitly calling fdatasync(). In
this approach, we do rely on filesystem journaling to pro-
tect the metadata of the SQLite journal file, but suppress
the every log-commit operation to accompany filesystem
journaling. Fig. 4 schematically illustrates the detailed
process; (i) WAL file is preallocated with the initialized
blocks (labeled as 1), (ii) the metadata of the WAL file
is synchronized to disk via fdatasync() (labeled as 2),
and (iii) the logs are committed to WAL file via direct IO
(labeled as 3, 4 and 5).

EXT4 filesystem maintains an initialized flag for
each data block. A file block is said to be initialized when
this flag is set. Any attempts to read the uninitialized

5

240 2015 USENIX Annual Technical Conference USENIX Association

fdatasync()

Figure 4: Preallocation with Explicit Journaling, 1: Preal-
locate the initialized blocks, 2: Journal the updated meta-
data, fdatasync(), 3, 4, and 5: Commit the logs with
DIO

block are returned all 0’s. The primary reason for this
mechanism is to avoid exposing the stale data.

Being pre-allocated with the file blocks, the direct
IO based log-commit operation becomes non-allocating
write, where both the page cache entries and the meta-
data of the WAL file remain intact. The log-commit op-
eration in WALDIO mode leaves no room for filesystem
journaling module to interfere with. WALDIO mode saves
the SQLite from the expensive filesystem journaling.
When the WAL file is created or extended, WALDIO calls
fdatasync() to synchronize the file metadata. With Ex-
plicit journaling, the WAL file becomes robust against
the system failure.

In Preallocation, a special care needs to be taken to ini-
tialize the allocated blocks. Otherwise, the logs written
in WALDIO mode may not be readable after unexpected
system failure. Let us explain why. The fallocate()

system call of EXT4 returns the uninitialized blocks.
They are initialized when they are written for the first
time. When a block is written with direct IO, the filesys-
tem sets the respective initialized flag if it has not
been initialized yet. However, since DIO write does not
accompany the filesystem journaling, the updated flag
is subject to loss under the unexpected system failure.
While the dirty page cache entries and the updated meta-
data are synchronized to the storage in every few sec-
onds, e.g. 5 sec, the contents in the writeback cache of
the storage device are written to the storage surface in
much shorter interval, e.g. in typically a few msec. Under
the unexpected system failure, therefore, the logs written
with direct IO may become unreadable even when they
actually exist in the storage due to the unavailability of
the initialized flag.

We propose three approaches to initialize the allo-
cated blocks and subsequently to guard the stale con-
tents in the allocated blocks against the exposure. The
first and the easiest approach is to zero-fill the allo-

cated blocks prior to use. In the second and the third
approaches, we exploit the discard (or trim) com-
mand in the eMMC storage [1] to guard the stale content
against the exposure. The discard command takes the
list of the logical block addresses as an input and asks the
eMMC storage to remove the mapping table entries for
the respective logical blocks. In the second approach, we
mount the filesystem with discard option and modify
fallocate() to allocate the blocks with initialized

flag set. When a filesystem uses discard mount op-
tion, it issues a discard command when the file blocks
are deallocated. To force the fallocate() to return the
blocks with initialized flags set, we port the exist-
ing NO HIDE STALE patch [34] to Linux source for Sam-
sung Galaxy S5. In the third approach, we modify the
fallocate() to allocate the blocks with initialized

flag set and to discard the allocated blocks. We embed
the discard command to the NO HIDE STALE patch [34]
developed for the second approach and we develop a
new flag NO HIDE STALE DISCARD for fallocate().
The main difference between the second and the third
approach is the time when the blocks are unmapped. In
the second and third approaches, the file blocks are un-
mapped when they are deallocated and when they are al-
located, respectively. In the second approach, the filesys-
tem issues discard command for all deallocated blocks.
Meanwhile, in the third approach, the filesystem discards
only the file blocks allocated to WAL file. The third ap-
proach yields the smaller overhead than the second one.

Each of these three approaches has pros and cons.
The zero-fill operation accompanies IO overhead. Us-
ing discard mount option may slow down the filesys-
tem [37]. Many recent smartphone devices including
our test platform Galaxy S5 mount the filesystem with
discard option. We implement all these schemes in our
test platform. Via implementing all three schemes, one
can choose the right scheme to initialize the allocated
blocks subject to the available features of the underlying
filesystem and storage device.

There exists an important implementation specific is-
sue which deserves further attention. The discard com-
mand is designed to make the garbage collection more
efficient [21]. It is not designed to hide the stale content.
The eMMC standard [1] does not define what needs to
be read when the discarded blocks are accessed. Some
eMMC products, e.g. the one used by Samsung Galaxy
S5 (Part No. MBC4GC), return all 0’s when the dis-
carded block is accessed. To use the discard command
to hide the stale content, one needs to assure that the
given eMMC product does not leak the stale content,
i.e. is guaranteed to return all 0’s or all 1’s when the dis-
carded block is accessed. Otherwise, one needs to take
the resort to use trim command even though it is sub-
ject to larger overhead. The trim command is defined

6

USENIX Association 2015 USENIX Annual Technical Conference 241

to return all 0’s or all 1’s when the trimmed block is
accessed [1]. On the same token, one also needs to as-
sure that the given eMMC product does not ignore the
discard command from the host in any circumstances,
e.g. when the eMMC device is busy for performing back-
ground garbage collection.

5.2 Header Embedding
The direct IO operation fails when the IO size is not sec-
tor aligned. In SQLite, neither the redo log nor the undo
log structures are sector aligned. Full fledged DBMS to
align its database and cache organization for efficient
block device interaction [10, 29, 39]. We reorganize the
structure of SQLite WAL file and the database page to in-
tegrate direct IO into SQLite. Figures in Fig. 5 illustrate
the redo and undo log structures of SQLite, respectively.
B-tree node size is 4 KByte. The undo log of SQLite con-
sists of 4 Byte prefix (page number), the 4 KByte journal
record, and 4 Byte checksum (Fig. 5(a)). Each of these
components is separately written with write(). In WAL
file, a redo log consists of 24 Byte frame header and 4
KByte WAL frame (Fig. 5(b)). They are written sepa-
rately as well. This fragmented data structure of SQLite
bars the use of direct IO in managing its journal file.

(a) rollback journal file

(b) WAL file

Figure 5: Journal file structure of SQLite, node size: 4
KByte

0

10

20

30

40

50

0 4 8 12 16

M
B

/s
e

c

Size(KB)

Direct IO

Figure 6: Effect of IO size: Sequential Write, Direct IO
(GalaxyS5 eMMC Part No.: MBG4GC)

We examine the DIO write performance under varying
IO size from 512 Byte to 16 KByte (Fig. 6). The sequen-
tial write performance of Samsung Galaxy S5 reaches
over 70 MByte/sec. With 512 Byte IO size, the sequen-
tial write is subject to extreme inefficiency yielding mere
2 MByte/sec. This is because the IO size is not aligned
with the block size. We observe larger degree of perfor-
mance improvement when the IO size is aligned with
the filesystem block size, 4 KByte, or NAND Flash page
size, 8 KByte, respectively. This trend persists beyond 16
KByte IO size. This simple experiment provides an im-
portant direction for our optimization effort; Align the IO
with the filesystem block size and with the NAND Flash
page size.

We develop Header Embedding to align the SQLite
IO with the filesystem block size. Instead of maintaining
the header outside the log record, we embed the WAL
header and the frame header into the header page and
the WAL frame, respectively. In WALDIO, we set the B-
tree node size to 4 KByte. WAL header is placed at the
free space between database header and schema table in
the root node of database B-tree. We harbor the 24 Byte
frame header at the end of WAL-frame. Fig. 7 illustrates
the log structure with header embedding. Embedding the
frame header into the B-tree node, the available space
in the B-tree node decreases. We physically examine the
free spaces in B-tree nodes of SQLite. With few excep-
tions, there exists sufficient room to harbor 24 Byte field.
Reserving 24 Byte for Header in the node, therefore, will
not increase the number of nodes in the B-tree.

Figure 7: SQLite database page structure with Header
Embedding (PH: Page Header, FH: Frame Header)

We examine the efficiency of the different aligning
schemes for redo log structure. In page padding, SQLite
pads the WAL header and WAL frame header to make
them 4 KByte aligned. We examine four schemes: WAL
(the original one), WAL with page padding, WALDIO
with page padding, and WALDIO with header embed-
ding. We perform 1,000 INSERT operations and exam-
ine the total IO volume. Fig. 8 illustrates the result.
In WAL mode, total 29 MByte is written. Among 29.0
MByte, file data and EXT4 journal writes account for
12.3 MByte and 16.7 MByte, respectively. The size of
WAL log record is 4120 Byte (24 Byte header and 4096
Byte frame). In committing 1,000 log entries of 4120

7

242 2015 USENIX Annual Technical Conference USENIX Association

Byte each, total 12.3 MByte is written to filesystem data
region. The fragmented log structure puts unnecessary
stress on the storage device. Via properly aligning the log

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

W
A

L
W

A
L(PP)

W
A

LD
IO

(PP)

W
A

LD
IO

(H
E)

V
o

lu
m

e
(M

B
)

EXT4 Data

EXT4 Journal

Figure 8: Total IO volume: 1000 INSERT in SQLite (PP:
page pading, HE: header embedding)

structure, we reduce the IO volume to EXT4 Data region
to 1/3 from 12.3 MByte to 4.4 MByte. With simple mod-
ification on the log structure accompanied by direct IO,
the total IO volume decreases to 1/6 from 29.0 MByte to
4.6 MByte. The performance result will be dealt with in
section 6.3.

5.3 Group Synchronization
Each layer in the IO stack, e.g. DBMS, filesystem, and
block device layer, aggregates the IO’s on its own way to
remove the IO bottleneck [9, 11, 15, 5]. While WALDIO

mode is successful in eliminating the filesystem journal-
ing overhead, the individual log-commit operations are
separately issued to the storage device. This nature of
direct IO bars the underlying Operating System from ag-
gregating and coalescing the IO’s. If the logs are imme-
diately synchronized to the storage surface after they are
written with direct IO, the storage behavior is subject to
further inefficiency since the storage device loses the op-
portunity to exploit its writeback cache. In this situation,
the IO size plays a rather critical role in the storage per-
formance. When the IO size is not properly aligned with
the NAND Flash page size, it may cause read-modify-
write problem [4, 24], proper handling of which requires
complicated firmware technique such as subpage map-
ping [22].

We develop Group Synchronization (Group Synch) to
mitigate the synchronization overhead of the direct IO
based log-commit operation. In Group Synch, we em-
ploy frame buffer and grouping interval. All log records
which have been written during a grouping interval
are maintained at the frame buffer. When the group-

(a) three write()’s with fdatasync()

(b) three write()’s with direct IO

(c) three write()’s in Group Synch

Figure 9: Writing three blocks to storage: fdatasync(),
direct IO vs. Group Synch

ing interval expires or when the frame buffer is full,
SQLite flushes the frame buffer with DIO write. The
Group Synch shares much of its idea with the prior arts;
Group Commit from DBMS [9, 11] and Anticipatory
disk scheduling from Operating System [17].

Figures in Fig. 9 schematically illustrates the IO be-
havior in writing three blocks to the storage. In Fig. 9(a),
each of three blocks is written with separate write()’s
(buffered IO) and then fdatasync() is called to syn-
chronize them. We observe two sets of writes: dark gray
ones and the light gray ones. The dark gray blocks cor-
respond to data blocks. They are flushed to the disk with
a single IO request. The set of light gray blocks corre-
spond to EXT4 journal writes. In Fig. 9(b), each of three
blocks is separately written via direct IO. Each of the IO
requests is synchronously delivered to disk, yielding sig-
nificant overhead. Fig. 9(c) illustrates the IO behavior in
the Group Synch. The IO requests are first accumulated
at the frame buffer and then flushed to the disk as a single
DIO write. With Group Synch, the three blocks are writ-
ten with single IO without accompanying the filesystem
journaling. The benefit of Group Synch is twofold: re-
duce the the overhead for synchronizing the DIO write’s
and align the IO with NAND Flash page size.

Group synch provides weaker transactional guaran-
tee than the other SQLite journaling modes since larger
number of logs may get lost under system failure. How-
ever, we carefully conjecture that the difference may be

8

USENIX Association 2015 USENIX Annual Technical Conference 243

less than significant if the frame buffer size is properly
set. In our limited empirical study, we find that a single
SQLite transactions updates a number of database tables
and indexes. For example, in contact manager applica-
tion of Android, inserting an address book entry yields
more than 8 logs to to the WAL file. We currently set the
frame buffer size to four pages (16 KByte).

5.4 Durability
WALDIO should use Full Sync option to make the re-
sult of log-commit operation durable. When the WALDIO
mode is used with Full Sync option, the log commit
operation consists of two phases: (i) writing a log to the
storage via DIO write and (ii) flush the writeback cache
of the storage device via calling fdatasync() (Fig. 10).
For better performance, we exploit Reliable Write

command of eMMC standard [1] and implement persis-
tent direct IO, PDIO. With PDIO write, WALDIO mode
writes the logs directly to the storage surface bypassing
the writeback cache of the Flash storage (Fig. 10). The
blocks written with persistent direct IO are guaranteed
to survive the power crash. With PDIO write, we can
dispense with Full Sync option since each log-commit
becomes immediately durable.

HOST storage(eMMC)

buffer cache writeback cache NAND Flash

buffered

write()

vola�le durable

fdsync()

Persistent DIO write()

DIO write()

DIO write()

WAL-FS

 WALDIO-PD

WALDIO-NS

fdsync()

WALDIO-FS

Figure 10: Making the log-commit durable: WAL with
Full Sync, WALDIO with Full Sync, WALDIO with
PDIO, WALDIO with Normal Sync

Non-removable battery in the smartphone can poten-
tially make the DIO write a persistent one. Different from
the logs in the buffer cache (Fig. 10), the logs in the
writeback cache of the storage can survive the warm fail-
ure, e.g. Operating System crash [6] or kernel-panic [14].
It is very unlikely that the software bugs power off the
device unexpectedly; Lue et.al. [35] reported that only
0.05% of AOSP software defect reports are related to the
unexpected power failure. Also, as long as the power sup-
ply leaves some slack for eMMC to flush its writeback
cache (typically a few msec), the content in the writeback
cache will eventually be written to the storage surface.
Given the rarity of the occasion, some application devel-
opers may prefer trading the perfect durability guarantee

with the almost perfect durability guarantee with perfor-
mance boost. For the device with non-removable battery,
we carefully argue that WALDIO makes the Normal Sync

option as one of the feasible choices for transactional
guarantee for practical purpose.

6 Experiment

We examine the performance of WALDIO mode. We com-
pare the behavior of the six SQLite journal modes:
DELETE, TRUNCATE, PERSIST, WAL, LS-MVBT [27] and
WALDIO. We implement these techniques in the recent
smartphone model (Galaxy S5, Samsung, Android 4.4.2
(KitKat), Qualcomm MSM8974 Quadcore 2.5 GHz, 2
GByte DRAM, 32 GByte eMMC with 8 Kbyte page).
We examine the performance of SQLite operations;
INSERT, UPDATE and DELETE. We use Mobibench [31]
and MOST [18] to generate the workload and to analyze
the trace, respectively. We use NO HIDE STALE DISCARD

flag in Preallocation.

6.1 IO Access Pattern
We first examine the IO access pattern of the newly
proposed journal mode, WALDIO. With WALDIO mode,
we insert a single 100 Byte record. Fig. 11 illustrates
the result. In WALDIO, INSERT operation generates sin-
gle page write (Fig. 11(a)). Be reminded that a single
INSERT of 100 Byte record yields 80 KByte page writes
and 28 KByte page writes in DELETE mode and WAL

mode, respectively (Table 1). For illustrative purpose, we
also show the IO accesses when the journal file is cre-
ated (Fig. 11(b)) and when the journal file is extended
(Fig. 11(c)), respectively.

60

62

64

66

68

70

0.22 0.26 0.3 0.34 0.38

L
B
A
(1
0
3
)

Time(sec)

8KB

20KB

EXT4 journal

(a) WAL mode

88

88.2

88.4

88.6

88.8

89

0.94 0.96 0.98 1.0 1.02

L
B

A
(1

0
3
)

Time(sec)

4KB

(b) WALDIO mode

Figure 12: IO trace for ten INSERTs: WAL mode vs.
WALDIO mode (Full Sync option)

To visualize the improvement on IO volume, we exam-
ine the IO trace for 10 INSERT operations in WAL mode
(Fig. 12(a)) and in WALDIO mode (Fig. 12(b)), respec-
tively. In this figure, the center and the radius of each
circle denote the start address and the size of an IO, re-
spectively. The circle radius is linearly proportional to
the actual IO size. In WAL mode, each log-commit writes

9

244 2015 USENIX Annual Technical Conference USENIX Association

27

29

31

33

35

0 0.1

se
c

to
r

A
d

d
re

ss
(x

1
0

5
)

Time(msec)

(a) INSERT

27

29

31

33

35

0 1 2

se
c

to
r

A
d

d
re

ss
(x

1
0

5
)

Time(msec)

(b) Preallocation with Explicit Journaling

27

29

31

33

35

0 5 10 15 20

se
c

to
r

A
d

d
re

ss
(x

1
0

5
)

Time(msec)

(c) Checkpoint

Figure 11: IO accesses in WALDIO mode (P+H: Header embedding WAL Frame, 3P: three DB Pages)

8 KByte to the SQLite journal file and 20 KByte to
EXT4 journal region. Due to the fragmented log struc-
ture, SQLite writes two 4 KByte blocks in committing
the 4120 Byte log (24 Byte header and 4096 Byte page).
In WALDIO, each log-commit yields 4 KByte IO since the
frame header is embedded within the B-tree node. It does
not entail any EXT4 journal IO since the log is com-
mitted with direct IO. An INSERT operation writes 28
KByte and 4 KByte to the storage in WAL and WALDIO,
respectively. WALDIO successfully eliminates the filesys-
tem journaling overhead and brings significant reduction
on the total IO volume written to the storage.

6.2 Performance of Header Embedding
We examine the performance of four different page
aligning schemes in WALDIO: sector padding, 4 KByte
page padding, 8 KByte page padding and Header Em-
bedding. We include the SQLite performance in WAL

mode as the baseline. Fig. 13 illustrates the result. When
the WAL file is sector padded (sector aligned), employ-
ing direct IO barely brings any performance gain against
the WAL mode. When IO size is not aligned with the
filesystem block size, the overhead of synchronously
writing each data block offsets the benefit of eliminating
the filesystem journaling overhead. When the WAL file
structure is aligned with block size (4 KByte), the per-
formance increases by 60% against the WAL. When the
WAL file structure is aligned with NAND Flash page size
(8 KByte), the SQLite performance increases by 100%
against WAL. Via embedding the frame header informa-
tion into the WAL frame, the SQLite yields 2.1× per-
formance against WAL mode from 587 insert/sec to 1239
insert/sec.

6.3 WALDIO, the performance
We discuss the performance impact of WALDIO journal
mode against existing SQLite journal modes: DELETE,
TRUNCATE, PERSIST, WAL and LS-MVBT [27]. In WALDIO,
we examine the performance under three synchroniza-
tion options: (i) Full Sync, WALDIO-FS, (ii) Persis-

 0

 500

 1000

 1500

INSERT UPDATE DELETE

T
ra

n
sa

ct
io

n
/s

e
c

WAL
WALDIO Sector Aligned
WALDIO Page Aligned, Write 4 KByte
WALDIO Page Aligned, Write 8 KByte
WALDIO Header Embedding

Figure 13: Page Aligning Schemes: Sector aligning, 4
KByte aligning, 8 KByte Aligning vs. Header Embed-
ding (Full Sync)

tent Direct IO, WALDIO-PD and (iii) Normal Sync,
WALDIO-NS. We examine the WALDIO performance with
and without Group Synch. In Group Synch, the frame
buffer size is set to 16 KByte with 2 msec grouping in-
terval.

We perform each of INSERT, UPDATE and DELETE

operations 1,000 times and measure the performance.
We put everything together in Fig. 14. The results in
Fig. 14 are categorized into five groups: stock SQLite
journal modes, LS-MVBT, WALDIO with Full Sync op-
tion, WALDIO with persistent direct IO and WALDIO with
Normal Sync option. In stock SQLite journal modes,
WAL mode yields the best performance (587 insert/sec).
With LS-MVBT, SQLite yields 1083 insert/sec perfor-
mance. With LS-MVBT, the SQLite performance in-
creases by 80% from the WAL mode. In all these jour-
nals modes, SQLite issues fdatasync() after every log-
commit.

In Full Sync option, WALDIO achieves 1219 in-
sert/sec in the absence of Group Sync. With Group Synch
with 16 KByte frame buffer, WALDIO performance leaps
to 2729 insert/sec. It corresponds to 4.6× performance

10

USENIX Association 2015 USENIX Annual Technical Conference 245

 0

 1000

 2000

 3000

 4000

 5000

INSERT UPDATE DELETE INSERT UPDATE DELETE INSERT UPDATE DELETE INSERT UPDATE DELETE INSERT UPDATE DELETE

T
ra

n
sa

c
ti

o
n

/s
e

c

DELETE
TRUNCATE
PERSIST

WAL

LS-MVBT WALDIO-FS+NoGS
WALDIO-FS+GS4

WALDIO-PD+NoGS

WALDIO-PD+GS4
WALDIO-NS+NoGS
WALDIO-NS+GS4

WALDIO-NSWALDIO-PDWALDIO-FSLSMVBTStock SQLite

Figure 14: Performance Summary, NoGS: without Group Synch, GS4: Group Sync size = 4 pages

against stock WAL mode and 2.5× performance against
LS-MVBT, respectively. Group Sync improves the perfor-
mance by 120% from 1219 insert/sec to 2729 insert/sec.
Group Synch is successful in eliminating the overhead of
guaranteeing the durability.

With persistent DIO, WALDIO performance increases
by 10% against WALDIO with Full Sync option. By-
passing the writeback cache at the storage device brings
significant improvement. The performance under persis-
tent DIO corresponds to 5.1 × performance against stock
WAL mode and 2.8× performance against LS-MVBT, re-
spectively.

In Normal Sync, the individual DIO based log-
commit operations are relieved from the burden of call-
ing the expensive fdatasync(). With Group Synch
with 16 KByte frame buffer, WALDIO achieves 4332 in-
sert/sec. The performance increases by more than 35%
against the case where individual log-commits are per-
sistently written to the storage surface; from 2967 in-
sert/sec (WALDIO-PD) to 4332 insert/sec (WALDIO-NS).
The WALDIO exhibits dramatic 7.4× and 4.0× perfor-
mance compared against the WAL and the LS-MVBT, re-
spectively. DELETE and UPDATE operations exhibit the
similar performance gain with the INSERT operation. Ta-
ble 2 illustrates the performance numbers for individual
modes.

6.4 IO Volume
We examine the total IO volume for performing
1,000 SQLite operations, insert, update and delete.
Fig. 15 illustrates the result. We limit our discussion to
insert operation due to the space limit. In rollback jour-
nal modes (DELETE, TRUNCATE and PERSIST), as much
as total 90 MByte is written to disk and 60% of which are
for EXT4 journal writes. Via using WAL mode, the total
page writes decreases to 29 MByte. LS-MVBT further de-

Journal Mode INS UPD DEL
DELETE 98 97 96
TRUNCATE 99 98 97
PERSIST 213 212 203
WAL 587 556 596
LS-MVBT 1083 1161 1191
WALDIO-FS + NoGS 1219 1254 1197
WALDIO-FS + GS 2729 2867 2546
WALDIO-PD + NoGS 1290 1380 1224
WALDIO-PD + GS 2967 3030 2839
WALDIO-NS + NoGS 2907 2973 2930
WALDIO-NS + GS 4332 4395 4507

Table 2: SQLite performance (WALDIO-FS: WALDIO

with Full Sync, WALDIO-PD: WALDIO with Persistent
Direct IO, WALDIO-NS: WALDIO with Normal Sync,
NoGS: Without Group Synch, GS: Group Synch with 4
pages)

0

20

40

60

80

100

I U D I U D I U D I U D I U D I U D

V
o

lu
m

e
(M

B
)

DEL TRU PER WAL LSM DIO

Filesystem journal
File Data/File Metadata

Figure 15: IO volume for 1000 INSERTs, DEL: DELETE,
TRU: TRUNCATE, PER: PERSIST, WAL: WAL, LSM:
LS-MVBT, DIO: WALDIO

11

246 2015 USENIX Annual Technical Conference USENIX Association

creases the write volume to 7 MByte. In WALDIO, SQLite
generates 4.6 MByte in executing an INSERT operation
1000 times. Compared to WAL mode, the total volume de-
creases to 1/6 from 29 MByte to 4.6 MByte.

Limited erase/write cycle of the NAND Flash storage
is one of the main governing factors for the lifespan and
the performance of the smartphone. The SQLite is re-
sponsible for dominant fraction of entire IO volume writ-
ten to the storage. Reducing the IO volume to 1/6, the
WALDIO technique can potentially allow the smartphone
vendors to adopt the NAND Flash device with smaller
Erase/Write cycle, e.g. TLC NAND Flash or NAND de-
vice with finer process technology, as the storage for their
smartphone.

7 Related Work

While not everybody entirely agrees [35], the perfor-
mance of the smartphone is governed by the performance
of the storage device, not by the performance of the air-
links [23]. In Android, it is reported that more than 70%
page writes generated by the smartphone application are
for filesystem journal and dominant fraction of which are
generated by SQLite DBMS [32]. The excessive filesys-
tem journaling activity is due to the fact that the SQLite
maintains a separate rollback journal file and synchro-
nizes the every update in the rollback journal file via
fsync() [19]. Tizen [16] also suffers from JOJ anomaly
[26].

Jeong et. al. applied various IO optimization tech-
niques, e.g. WAL mode, F2FS [30], external journal-
ing and polling based IO and achieved 300% perfor-
mance improvement against stock Android IO stack with
DELETE journal mode [19]. Shen et. al. modified the
EXT4 journal module and achieved 7% performance im-
provement against WAL mode [38]. Kim et. al. proposed
to use LS-MVBT (Multiversion B-tree with Lazy Split) in-
stead of B-tree in SQLite database [27]. LS-MVBT weaves
the crash recovery information into the database file so
that SQLite does not have to maintain separate file for
crash recovery. LS-MVBT brings 80% performance gain
against WAL mode in SQLite.

There are a number of benchmark programs for An-
droid IO performance [12, 18, 2]. Kim et. al. [25] pro-
posed to maintain the EXT4 journal region at NVRAM
and to exploit its byte-granularity accessibility. Lue
et. al. proposed to maintain the SQLite rollback jour-
nal file at DRAM [35] in the smartphone. Chidambaram
et. al. proposed OPTFS to reduce the fsync() overhead
involved in EXT4 journaling [7]. Kang et. al. proposed a
transactional API for block device so that filesystem op-
erations are free from the journaling overhead [20]. Pier-
nas et. al. proposed to maintain the data and the metadata
on the different blocks and maintains only single copy of

metadata [36].

8 Conclusion

In this work, we successfully resolve the Journaling of
Journal Anomaly in Android IO stack. We remove the
root cause for excessive IO behavior in Android IO stack:
the filesystem journaling. We develop a novel SQLite
journal mode, WALDIO. In WALDIO mode, SQLite uses
direct IO for log-commit operation so that it does not en-
tail the expensive filesystem journaling. We develop Pre-
allocation with Explicit Journaling, Header Embedding
and Group Synch to enable the SQLite to exploit the di-
rect IO semantics without compromising the filesystem
integrity optimizing its performance for NAND Flash
storage. The proposed features are implemented on the
commercially available smartphone. WALDIO achieves as
much as 7.4× increase against WAL mode and as much
as 4.0× increase against LS-MVBT, respectively. With
WALDIO mode, SQLite generates only 1/6 of the IO vol-
ume generated by SQLite in WAL mode.

Despite the dramatic improvement, WALDIO mode
does not cost any major changes on the existing interface
definitions of SQLite or of the filesystem, nor the intro-
duction of the new ones. It is achieved by the minimal set
of right modifications.

The contribution of this work should be viewed not
only from the performance perspective but also from the
NAND Flash endurance point of view. We carefully be-
lieve that via decreasing the IO volume generated by
SQLite to 1/6, WALDIO can make the TLC NAND Flash
not an infeasible choice for storage device in Android
platform. Adoption of TLC NAND Flash in Android de-
vice can significantly reduce the cost of the smartphone
and can make it available to wider community in the
world.

9 Acknowledgments

We would like to thank the anonymous reviewers for
their insightful comments and feedback. Special thanks
go to our shepherd Theodore Ts’o whose constructive
comment and advice have made our work further ma-
ture and rigorous. We also would like to thank Yong-
seok Jo at EFTECH, Dongjun Shin, Seunghwan Hyun,
Dongil Park and Heegyu Kim at Samsung Electronics
for their advice on revising this paper. Finally, we like to
thank our colleague Seongjin Lee for his help in prepar-
ing the manuscript. This work is sponsored by IT R&D
program from MKE/KEIT (No. 10041608, Embedded
system Software for New-memory based Smart Device)
and by ICT R&D program of MSIP/IITP (No.1I2221-14-
1005).

12

USENIX Association 2015 USENIX Annual Technical Conference 247

References
[1] emmc electrical standard 5.0. http://www.jedec.org/

sites/default/files/docs/JESD84-B50.pdf/.

[2] http://www.antutu.com.

[3] Mysql homepage. http://www.mysql.com/.

[4] BOUGANIM, L., JONSSON, B., AND BONNET, P. uFLIP: Un-
derstanding Flash IO Patterns. In Proc. of CIDR 2009 (Asilomar,
CA, USA, Jan 2009).

[5] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: A Distributed Storage System for
Structured Data. ACM Trans. Comput. Syst. 26, 2 (June 2008),
4:1–4:26.

[6] CHEN, P. M., NG, W. T., CHANDRA, S., AYCOCK, C., RA-
JAMANI, G., AND LOWELL, D. The rio file cache: Surviving
operating system crashes. In Proc. of ASPLOS 1966 (Cambridge,
MA, USA, Sep 1996).

[7] CHIDAMBARAM, V., PILLAI, T. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Optimistic Crash Consistency.
In Proc. of ACM SOSP 2013 (Farminton, PA, USA, 2013).

[8] CHINAFLASHMARKET.COM. 2013 NAND Flash Market annual
report.

[9] DEWITT, D. J., KATZ, R. H., OLKEN, F., SHAPIRO, L. D.,
STONEBRAKER, M. R., AND WOOD, D. A. Implementation
Techniques for Main Memory Database Systems. In Proc. of the
ACM SIGMOD 1984 (Boston, MA, USA, 1984).

[10] EFFELSBERG, W., AND HAERDER, T. Principles of Database
buffer management. ACM Trans. on Database Systems 9, 4 (Dec.
1984), 560–595.

[11] GAWLICK, D., AND KINKADE, D. Varieties of Concurrency
Control in IMS/VS Fast Path. IEEE Database Eng. Bull. 8, 2
(1985), 3–10.

[12] GINGRICH, A. The Great Android Police Storage
Benchmark: 11 Modern Devices Compared In 13 Tests.
http://www.androidpolice.com/tags/rl-benchmark/.

[13] GRANCHER, E. Oracle and storage IOs, explanations and expe-
rience at CERN. In Proc. of JPCS CHEP 2009 (Prague, Czech,
Mar 2010).

[14] GU, W., KALBARCZYK, Z., IYER, R. K., AND YANG, Z. Char-
acterization of linux kernel behavior under errors. In Proc. of
DSN 2003 (San Francisco, CA, USA, Jun 2003).

[15] HAGMANN, R. Reimplementing the Cedar File System Using
Logging and Group Commit. SIGOPS Oper. Syst. Rev. 21, 5 (Nov.
1987), 155–162.

[16] HTTP://WWW.TIZEN.ORG.

[17] IYER, S., AND DRUSCHEL, P. Anticipatory Scheduling: A Disk
Scheduling Framework to Overcome Deceptive Idleness in Syn-
chronous I/O. In Proc. of ACM SOSP 2001 (Banff, Alberta,
Canada, Oct 2001).

[18] JEONG, S., LEE, K., HWANG, J., LEE, S., AND WON, Y.
Framework for Analyzing Android I/O Stack Behavior: From
Generating the Workload to Analyzing the Trace. Future Internet
5, 4 (2013), 591–610.

[19] JEONG, S., LEE, K., LEE, S., SON, S., AND WON, Y. I/O Stack
Optimization for Smartphones. In Proc. of USENIX ATC 2013
(San Jose, CA, USA, Jun 2013).

[20] KANG, W.-H., LEE, S.-W., MOON, B., OH, G.-H., AND MIN,
C. X-FTL: Transactional FTL for SQLite Databases. In Proc. of
ACM SIGMOD 2013 (New York, NY, USA, Jun 2013).

[21] KIM, B., KANG, D. H., MIN, C., AND EOM, Y. I. Understand-
ing implications of trim, discard, and background command for
emmc storage device. In Proc. of IEEE GCCE 2014 (Tokyo,
Japan, Oct 2014).

[22] KIM, D., AND KANG, S. Partial page buffering for consumer
devices with flash storage. In Proc. of IEEE ICCE-Berlin (Berlin,
Germany, 2013).

[23] KIM, H., AGRAWAL, N., AND UNGUREANU, C. Revisiting stor-
age for smartphones. In Proc. of USENIX FAST 2012 (San Jose,
CA, USA, Feb 2012).

[24] KIM, H., AND AHN, S. BPLRU: A Buffer Management Scheme
for Improving Random Writes in Flash Storage. In Proc. of
USENIX FAST 2008 (San Jose, CA, USA, Feb 2008).

[25] KIM, J., MIN, C., AND EOM, Y. I. Reducing Excessive Jour-
naling Overhead with Small-Sized NVRAM for Mobile Devices.
IEEE Transactions on Consumer Electronics 6, 2 (June 2014).

[26] KIM, M., LEE, S., AND WON, Y. IO Workload Characterization
Of Tizen Based Consumer Electronics. In Proc. of IEEE ISCE
2014 (Jeju, Korea, June 2014).

[27] KIM, W.-H., NAM, B., PARK, D., AND WON, Y. Resolving
Journaling of Journal Anomaly in Android I/O: Multi-Version B-
tree with Lazy Split. In Proc. of USENIX FAST 2014 (Santa Clara,
CA, Feb 2014).

[28] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND
LIGUORI, A. kvm: the Linux virtual machine monitor. In Proc.
of the Linux Symposium (Ottawa, Ontario, Canada, Jun 2007).

[29] LANG, T., WOOD, C., AND FERNANDEZ, E. B. Database
Buffer paging in virtual storage systems. ACM Trans. on
Database Systems 2, 4 (Dec. 1977), 339–351.

[30] LEE, C., SIM, D., HWANG, J., AND CHO, S. F2FS: A New File
System for Flash Storage. In Proc. of USENIX FAST 2015 (San
Jose, CA, US, Feb 2015).

[31] LEE, K. Mobile Benchmark Tool (MOBIBENCH). https://

github.com/ESOS-Lab/Mobibench.

[32] LEE, K., AND WON, Y. Smart Layers and Dumb Result: IO
Characterization of an Android-based Smartphone. In Proc. of
EMSOFT 2012 (Tampere, Finland, Oct 2012).

[33] LI, D., LIAO, X., JIN, H., ZHOU, B., AND ZHANG, Q. A New
Disk I/O Model of Virtualized Cloud Environment. IEEE Trans-
actions on Parallel and Distributed Systems 24, 6 (June 2013),
1129–1138.

[34] LIU”, Z. vfs: add falloc fl no hide stale flag in fallocate. http:
//patchwork.ozlabs.org/patch/153251/.

[35] LUO, H., TIAN, L., AND JIANG, H. qNVRAM: quasi Non-
Volatile RAM for Low Overhead Persistency Enforcement in
Smartphones. In Proc. of USENIX HotStorage 2014 (Philadel-
phia, PA, USA, Jun 2014).

[36] PIERNAS, J., CORTES, T., AND GARCÍA, J. M. DualFS: A New
Journaling File System Without Meta-data Duplication. In Proc.
of ICS 2002 (New York, NY, USA, 2002).

[37] ”REDHAT”. ”performance of trim command on ext4 filesystem”.

[38] SHEN, K., PARK, S., AND ZHU, M. Journaling of Journal Is
(Almost) Free. In Proc. USENIX FAST 2014 (Santa Clara, CA,
Feb 2014).

[39] SILBERSCHATZ, A. S., KORTH, H. F., AND SUDARSHAN, S.
Database System Concepts. McGraw-Hill.

[40] ”SQLITE”. www.sqlite.org/famous.html.

[41] TRENDFORCE. Global mobile dram revenue rises 6%, Nov
2014. http://www.dramexchange.com/WeeklyResearch/

Post/5/3904.html.

13

