Text Size
Venerdì, Gennaio 19, 2018
Tecnologia Spaziale Teoria delle Stringhe e Dimensioni Extra

Gli avvistamenti Ufo ripresi dalla Nasa nel 2012

Anche durante quest'ultimo anno la Nasa, durante le varie missioni spaziali, è stata testimone involontaria di alcuni avvistamenti Ufo immortalati inconfutabilmente nei suoi video e foto. La Nasa no...

E' stato realizzato dal MIT il mantello dell'invisibilità anche per gli elettroni

Un mantello dell’invisibilità per gli elettroni è stato proposto da un gruppo di ricercatori del Massachusetts Institute of Technology (MIT), che illustrano i risultati a cui sono giunti in un ar...

Il mistero della donna a cui crescono peli di metallo

Di fronte a certe notizie c’è da iniziare a credere in coloro che lanciano da anni l’allarme mutazioni genetiche. Molti esempi si stanno manifestando sia nel mondo animale che in quello umano spec...

Il dito e la mano fossile di 100 milioni di anni

Homo "Cambrianensis"... Vi starete di certo chiedendo cosa possa significare questo termine, la risposta è ovvia: niente! Nello studio delle ere geologiche si definisce "cambriano" lo strato in cui ...

Il buco nero gigantesco, la fascia di asteroidi dei sistemi solari ed il rinnovato interesse Nasa per la Luna

Un buco nero da record che si trova dove non era previsto. L’esistenza è stata dedotta studiando NGC 1277, una piccola galassia lontana 200 milioni di anni luce. Le sue stelle ruotano attorno al ...

Buddha Boy: i prodigi del Budda ragazzo digiuno da mesi nella foresta

BARA (NEPAL) - Il giovane aspirante Budda sta accoccolato da nove mesi nell'incavo di un albergo gigante, quasi fosse un ventre materno, nelle foreste di Chitwan. La sua sagoma si distingue appen...

  • Gli avvistamenti Ufo ripresi dalla Nasa nel 2012


    Publish In: Le Prove
  • E' stato realizzato dal MIT il mantello dell'invisibilità anche per gli elettroni


    Publish In: Scienza e Futuro
  • Il mistero della donna a cui crescono peli di metallo


    Publish In: Uomini e Misteri
  • Il dito e la mano fossile di 100 milioni di anni


    Publish In: Oopart Archeomisteri
  • Il buco nero gigantesco, la fascia di asteroidi dei sistemi solari ed il rinnovato interesse Nasa per la Luna


    Publish In: News Astronomia
  • Buddha Boy: i prodigi del Budda ragazzo digiuno da mesi nella foresta


    Publish In: Uomini e Misteri

Teoria delle Stringhe e Dimensioni Extra

La teoria delle stringhe, talvolta definita teoria delle corde, è una teoria della fisica che ipotizza che la materia, l'energia e in alcuni casi lo spazio e il tempo siano in realtà la manifestazione di entità fisiche sottostanti, chiamate appunto stringhe o brane, a seconda del numero di dimensioni in cui si sviluppano

La teoria delle stringhe è un modello fisico i cui costituenti fondamentali sono oggetti ad una dimensione (le stringhe) invece che di dimensione nulla (i punti) caratteristici della fisica anteriore alla teoria delle stringhe. Per questa ragione le teorie di stringa sono capaci di evitare i problemi di una teoria fisica connessi alla presenza di particelle puntiformi.

Uno studio più approfondito della teoria delle stringhe ha rivelato che gli oggetti descritti dalla teoria possono essere di varie dimensioni e quindi essere punti (0 dimensioni), stringhe

(1 dimensione), membrane (2 dimensioni) e oggetti di dimensioni D superiori (D-brane).

Il termine teoria delle stringhe si riferisce propriamente sia alla teoria bosonica a 26 dimensioni che alla teoria supersimmetrica a 10 dimensioni. Tuttavia nell'uso comune, teoria delle stringhe si riferisce alla variante supersimmetrica, mentre la teoria anteriore va sotto il nome di teoria bosonica delle stringhe.

L'interesse della teoria risiede nel fatto che si spera possa essere una teoria del tutto, ossia una teoria che inglobi tutte le forze fondamentali. È una soluzione percorribile per la gravità quantistica e in più può descrivere in modo naturale le interazioni elettromagnetiche e le altre interazioni fondamentali. La teoria supersimmetrica include anche i fermioni, i blocchi costituenti la materia. Non si conosce ancora se la teoria delle stringhe sia capace di descrivere un universo con le stesse caratteristiche di forze e materia di quello osservato finora.

Ad un livello più concreto, la teoria delle stringhe ha originato progressi nella matematica dei nodi, negli spazi di Calabi-Yau e in molti altri campi. La teoria delle stringhe ha anche gettato maggior luce sulle teorie di gauge supersimmetrico, un argomento che include possibili estensioni del modello standard.

Una caratteristica interessante della teoria delle stringhe è che essa predice il numero di dimensioni che l'Universo dovrebbe avere. Né la teoria dell'elettromagnetismo di Maxwell né la teoria della relatività di Einstein dicono nulla sull'argomento: entrambe le teorie richiedono che i fisici inseriscano "a mano" il numero delle dimensioni.

Invece, la teoria delle stringhe consente di calcolare il numero di dimensioni dello spazio-tempo dai suoi principi base. Tecnicamente, questo accade perché il principio di invarianza di Lorentz può essere soddisfatto solo in un certo numero di dimensioni. Più o meno questo equivale a dire che se misuriamo la distanza fra due punti e poi ruotiamo il nostro osservatore di un certo angolo e misuriamo di nuovo, la distanza osservata rimane la stessa solo se l'universo ha un ben preciso numero di dimensioni.

Il solo problema è che quando si esegue questo calcolo, il numero di dimensioni dell'universo non è quattro, come ci si potrebbe attendere (tre assi spaziali e uno temporale), bensì ventisei. Più precisamente, le teorie bosoniche implicano 26 dimensioni, mentre le superstringhe e le teorie-M risultano richiedere 10 o 11 dimensioni. Nelle teorie di stringa bosonica, le 26 dimensioni risultano dall'equazione di Polyakov

Z=\int D^F \left [\rho \left (\xi \right ) \right ] \exp \left ( -{(26 - D) \over 12 \pi} \int_\xi \left [ {1 \over 2} {\left (\partial_a \rho \right )^2 \over \rho^2} \right ] + \int_\xi \mu_R^2 \rho^2 \right ).

ano in contraddizione con i fenomeni osservati. I fisici di solito risolvono questo problema in uno dei due diversi modi. Il primo consiste nel compattare le dimensioni extra; cioè, si suppone che le 6 o 7 dimensioni extra producano effetti fisici su un raggio così piccolo da non poter essere rilevate nelle nostre osservazioni sperimentali. Senza aggiungere i flussi, riusciamo ad ottenere la risoluzione del modello a 6 dimensioni con gli spazi di Calabi-Yau. In 7 dimensioni, essi sono chiamati varietà G2 e in 8 varietà Spin(7). In sostanza, queste dimensioni extra vengono matematicamente compattate con successo facendole ripiegare su sé stesse.

Una analogia molto usata per questo è di considerare lo spazio multidimensionale come un tubo di gomma per il giardino. Se guardiamo il tubo da una certa distanza, esso sembra avere una sola dimensione, la sua lunghezza. Questo corrisponde alle quattro dimensioni macroscopiche cui siamo abituati normalmente. Se però ci avviciniamo al tubo, scopriamo che esso ha anche una seconda dimensione, la sua circonferenza. Questa dimensione extra è visibile solo se siamo vicini al tubo, proprio come le dimensioni extra degli spazi di Calabi-Yau sono visibili solo a distanze estremamente piccole, e quindi non sono facilmente osservabili.

(Ovviamente, un normale tubo per il giardino esiste nelle tre dimensioni spaziali, ma per consentire l'analogia si trascura il suo spessore e si considera solo il moto sulla superficie del tubo. Un punto sulla superficie del tubo può essere individuato con due numeri, la distanza da una delle estremità e una distanza sulla circonferenza, proprio come un punto sulla superficie terrestre può essere individuato univocamente dalla latitudine e dalla longitudine. In entrambi i casi, diciamo che l'oggetto ha due dimensioni spaziali. Come la Terra, i tubi da giardino hanno un interno, una regione che richiede una dimensione extra; però, a differenza della Terra, uno spazio di Calabi-Yau non ha un interno).

Un'altra possibilità è che noi siamo bloccati in un sottospazio a "3+1" dimensioni dell'intero universo, ove il 3+1 ci ricorda che il tempo è una dimensione di tipo diverso dallo spazio. Siccome questa idea implica oggetti matematici chiamati D-brane, essa è nota come Teoria Braneworld.

In entrambi i casi la gravità, agendo nelle dimensioni nascoste, produce altre forze non gravitazionali, come l'elettromagnetismo. In linea di principio, quindi, è possibile dedurre la natura di queste dimensioni extra imponendo la congruenza con il modello standard, ma questa non è ancora una possibilità pratica.

Video 1

 

Video 2

 

Video 3

 

Video 4

 

Video 5

 

Video 6

 

Video 7

 

Video 8


blog comments powered by Disqus

Secondo te prima della nostra c'è stata un altra civiltà?

Wikipedia Affiliate Button
jeux gratuit