Text Size
Sabato, Gennaio 20, 2018
Scienza e Futuro Un nuovo stato per la superconduzione

Dalle sorprese di Mercurio alle antenne che si indossano

E’ di nuovo tempo di incontri per la sonda americana MESSENGER. Lanciata nel 2004, è ripassata per la terza volta vicino a Mercurio, il primo pianeta del sistema solare. Si tratta di una manovra, dett...

Il mistero della colonna di Ashoca

La cosiddetta Colonna di Ferro (o colonna di Ashoka), situata a Delhi (in India), è una colonna in ferro423ruggine nonostante sia rimasta esposta per 1600 anni al clima monsonico. alta 7 metri e 21 ...

La fusione dei buchi neri nati dalla stessa stella, la posizione stimata per il Pianeta X nel nostro Sistema Solare ed i primi piani per mandare un lander sulla luna Europa

I due buchi neri, la cui fusione (coalescenza, come dicono gli addetti ai lavori) ha dato origine alla brevissima onda gravitazionale rilevata da LIGO il 14 settembre 2015, potrebbero essersi origin...

Le nuove e intriganti teorie sui déjà vu

Chi di noi non ha mai sperimentato, almeno una volta, il curioso fenomeno del déja vu, quella strana sensazione di aver già vissuto una certa esperienza, senza ricordare il luogo e il tempo? P...

Prahlad Jani: l'uomo che non mangia e beve da 70 anni

Per la scienza è ancora tutto un mistero. I medici dell’esercito indiano stanno tenendo sotto osservazione un santone, Prahlad Jani di 83 anni ma chiamato rispettosamente Mataji, per scoprir...

Il caso delle misteriose e-mail inviate da un morto

Quando Jack Froese, 32 anni, nel giugno 2011 è morto di aritmia cardiaca, ha lasciato nel lutto numerosi amici e i suoi familiari. Ma la BBC ha rivelato che diverse misteriose e-mail postume sono ...

  • Dalle sorprese di Mercurio alle antenne che si indossano


    Publish In: News Astronomia
  • Il mistero della colonna di Ashoca


    Publish In: Oopart Archeomisteri
  • La fusione dei buchi neri nati dalla stessa stella, la posizione stimata per il Pianeta X nel nostro Sistema Solare ed i primi piani per mandare un lander sulla luna Europa


    Publish In: News Astronomia
  • Le nuove e intriganti teorie sui déjà vu


    Publish In: Uomini e Misteri
  • Prahlad Jani: l'uomo che non mangia e beve da 70 anni


    Publish In: Uomini e Misteri
  • Il caso delle misteriose e-mail inviate da un morto


    Publish In: Uomini e Misteri

Un nuovo stato per la superconduzione

 

La superconduttività può coesistere con un campo magnetico intenso. Lo ha dimostrato uno studio pubblicato su “Nature Physics” a firma di Vesna Mitrovic della Brown University e colleghi. Il risultato conferma una previsione teorica formulata nel 1964 e finora sfuggita alla verifica sperimentale, ampliando le conoscenze su questo tipo di fenomeni.

La superconduttività è la capacità di alcuni materiali di condurre, in opportune condizioni, corrente elettrica senza resistenza. Dal punto di vista microscopico dipende dalla formazione di coppie di elettroni note come coppie di Cooper. Una delle caratteristiche di queste coppie è che in ciascuna di esse gli spin degli elettroni, che possiamo immaginare come gli assi di rotazione intrinseca, sono orientati in direzioni tra loro opposte, e indicate convenzionalmente con i termini "su" e "giù". Normalmente, in un materiale superconduttore gli elettroni con spin “su” sono tanti quanti gli elettroni con spin “giù”, così in media, ogni elettrone può trovare un partner adatto a formare una coppia di Cooper.

Questa condizione favorevole alla formazione di coppie di Cooper si perde quando il materiale superconduttore è immerso in un campo magnetico, perché gli spin tendono a orientarsi lungo le linee del campo.

Ma che cosa succede quando il numero di elettroni con un determinato spin, per esempio "su", è sensibilmente più elevato rispetto a al numero di elettroni con spin opposto? Si può instaurare ancora uno stato superconduttore? E di che tipo?

Un nuovo stato per la superconduzione

A livello microscopico, il fenomeno della superconduttività si deve alle coppie di Cooper, ciascune delle quali è formata da due elettroni con spin tra loro opposto (frecce rosse e blu). La presenza di un campo magnetico esterno perturba la formazione delle coppie. Ma secondo l'effetto FFLO, in opportune condizioni, gli elettroni spaiati si riuniscono in bande in cui la conduzione senza resistenza è ancora possibile (frecce viola).

La questione è stata affrontata nel 1964 da Peter Fulde, Richard Ferrell, Anatoly Larkin e Yuri Ovchinnikov, in un lavoro teorico in cui fu previsto che la superconduttività può emergere in alcuni tipi di materiali anche in presenza di un campo magnetico esterno.

La teoria prevedere che gli elettroni senza partner possano raccogliersi in bande o fasce discrete lungo il materiale superconduttore. In queste bande, la conduzione di corrente rimarrebbe normale, mentre il resto del materiale sarebbe superconduttore. Questa superconduttività "modulata" prende il nome di fase FFLO, dalle iniziali dei quattro fisici che l'hanno prevista.

Per studiare il fenomeno, Mitrovic e colleghi hanno usato un superconduttore organico composto di strati ultrasottili, esattamente il tipo di materiale che dovrebbe mostrare il comportamento previsto dalla fase FFLO. Gli autori hanno studiato il comportamento del superconduttore sottoposto a un intenso campo magnetico, e hanno scoperto zone del materiale in cui si riunivano gli elettroni non accoppiati, dotati tutti dello stesso stato di spin e per questo definiti polarizzati.

“Questi elettroni 'polarizzati' si comportano come piccole particelle costrette a stare un una scatola”, spiega Mitrovic. “L'aspetto interessante è che in queste condizioni, si formano particolari stati che consentono il trasporto di supercorrenti attraverso regioni non superconduttrici: la corrente può scorrere senza resistenza attraverso tutto il materiale in questo speciale stato di superconduzione”.

In particolare un'intuizione ha consentito ai ricercatori di arrivare a questa prima verifica sperimentale dell'effetto FFLO: il sistema doveva essere tenuto a temperatura più elevata rispetto a quella ritenuta adatta.

“Normalmente, per osservare stati quantistici si cerca mantenere il sistema il più freddo possibile, per limitare il moto termico delle particelle”, conclude Mitrovic. Ma aumentando la temperatura, conclude la ricercatrice, è stata incrementata la sensibilità della sonda usata per rilevare gli stati di superconduzione previsti per teorica cinquant'anni fa.


blog comments powered by Disqus

Secondo te prima della nostra c'è stata un altra civiltà?

Wikipedia Affiliate Button
jeux gratuit