Text Size
Domenica, Ottobre 20, 2019
Scienza e Futuro La speranza degli scienziati nella ricerca del fotone oscuro

Il mistero della bambina cinese ricoperta di peli

Non sono ancora riusciti a capire di quale malattia soffra i medici di Tian Tian, una bimba di soli 16 mesi la cui pelle è ricoperta da un folto pelo di colore nero. Non appena è nata, già av...

Il geode di Coso, il manufatto impossibile di 500.000 anni fa

Uno degli oggetti "impossibili", che sono stati trovati dove non avrebbero dovuto essere è il famoso  geode ritrovato nei pressi di olancha, in California, nelle montagne di Coso, il 13 febbraio 1961,...

Lo strano ritrovamento di uno scheletro con il cranio allungato ad Arkaim in Russia

Uno scheletro con il teschio dalla forma insolita è stato portato alla luce nel sito archeologico di Arkaim, conosciuto come la Stonehenge della Russia. Alla diffusione della notizia, alcuni sos...

Secondo la scienza i robot del futuro sentiranno anche il dolore come un essere umano

I ROBOT non sentono dolore, o perlomeno così abbiamo sempre pensato. Mentre se noi lo avvertiamo, una ragione c'è: il dolore fisico ci fa percepire ed evitare il pericolo. Semplicemente, ci imped...

Alla ricerca della mitica El Dorado

Da quando è stata scoperta l'America la ricerca di El Dorado non si è mai fermata, ma cosa sappiamo di questa leggendaria città?   L'El Dorado (abbreviazione spagnola di El indio Dorado) è un luogo ...

Dubbi sulla materia oscura, il Sole e il riscaldamento globale e gli astronomi del Cile

Per la materia oscura non c’è pace. Ogni volta che qualcuno deduce la sua presenza in nuove zone, ecco spuntare teorie che addirittura ne smentiscono l’esistenza. L’ultima è tornata alla ribalta in ...

  • Il mistero della bambina cinese ricoperta di peli


    Publish In: Uomini e Misteri
  • Il geode di Coso, il manufatto impossibile di 500.000 anni fa


    Publish In: Oopart Archeomisteri
  • Lo strano ritrovamento di uno scheletro con il cranio allungato ad Arkaim in Russia


    Publish In: Oopart Archeomisteri
  • Secondo la scienza i robot del futuro sentiranno anche il dolore come un essere umano


    Publish In: Scienza e Futuro
  • Alla ricerca della mitica El Dorado


    Publish In: Civiltà Misteriose
  • Dubbi sulla materia oscura, il Sole e il riscaldamento globale e gli astronomi del Cile


    Publish In: News Astronomia

La speranza degli scienziati nella ricerca del fotone oscuro

Nei tunnel sotterranei della Thomas Jefferson National Accelerator Facility di Newport News, in Virginia, un fascio di elettroni viaggia in un acceleratore di particelle. Le energie degli elettroni sono modeste, ma il fascio è fortemente impacchettato, in effetti c'è bisogno di un fascio molto luminoso per rilevare un fotone che non splende.

In un esperimento della durata di tre settimane il cui inizio è previsto per il 24 aprile, gli elettroni si scontreranno con un sottile bersaglio di tungsteno 500 volte al secondo, generando una pioggia di particelle con vita media estremamente breve. Dai quei frammenti, i fisici sperano di trovare, grazie all'Heavy Photon Search (HPS), i segni di qualcosa di eccezionalmente raro: un fotone “pesante” od “oscuro”.

La scoperta aprirebbe la strada a un mondo sconosciuto di forze oscure e di atomi oscuri su cui i fisici teorici hanno a lungo speculato e potrebbe permettere di individuare la materia oscura che si ritiene costituire l'85 per cento della materia presente nell'universo.

I ricercatori dell'HPS al Jefferson Lab sono pronti ad ammettere che l'esperimento, come altri due del laboratorio che indagano questo "settore oscuro", molto probabilmente non raggiungerà alcun risultato di rilievo. Ma l'investimento fatto per questi progetti – circa tre milioni di dollari per costruire e usare il rivelatore HPS – ha spinto molti fisici a fare un tentativo.

“In fisica, è sempre importante chiedersi se esistano forze ancora più fondamentali”, ha spiegato il fisico John Jaros, uno dei coordinatori dell'esperimento HPS.

A differenza dei fotoni normali, il fotone oscuro sarebbe dotato di massa e sarebbe rilevabile solo per via indiretta, dopo che i fotoni oscuri sono decaduti in elettroni e positroni (le antiparticelle degli elettroni). Come il fotone normale, che media l'interazione elettromagnetica, quello oscuro medierebbe una nuova forza fondamentale che si aggiungerebbe alle quattro che già conosciamo. Sarebbe il primo segno di un mondo nascosto, che potrebbe includere un intero “zoo” di nuove particelle, inclusa la materia oscura. “Sarebbe come vedere per la prima volta i satelliti di Giove come ha fatto Galileo”, ha commentato Nima Arkani-Hamed, fisico teorico dell'Institute for Advanced Study di Princeton, nel New Jersey.

I fisici teorici speravano che il Large Hadron Collider, il più potente (e costoso) acceleratore del mondo, costruito al CERN di Ginevra, potesse aprire la strada a nuovi concetti, come la supersimmetria, un insieme di teorie che risolverebbero alcuni problemi del modello standard della fisica delle particelle. Ma l'LHC finora non ha fornito indizi, come per esempio le particelle di materia oscura previste dal alcuni modelli della supersimmetria.

I risultati sono stati abbastanza deludenti", ha spiegato Philip Schuster, fisico teorico del Canada’s Perimeter Institute for Theoretical Physics di Waterloo, in Ontario. “Così si stanno verificando altre possibilità”.

Così, alcuni fisici volgono la loro attenzione alla "frontiera dell'intensità”, producendo molte collisioni e andando alla ricerca di eventi rari nei prodotti di collisione. I fasci elettronici del Jefferson Lab non sono i più potenti ma sono estremamente intensi.


L'idea di un settore oscuro fu proposto per la prima volta nel 1986 (B. Holdom Phys. Lett. B 166,196–198; 1986), ma è rimasto in gran parte inesplorato fino a quando, pochi anni fa, un gruppo di fisici teorici tra cui Arkani-Hamed ha ripreso la teoria (N. Arkani-Hamed et al. Phys. Rev. D 79, 015014; 2009). Il suo gruppo ha sviluppato l'idea alla luce dei risultati di una missione satellitare del 2006 chiamata PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics), che ha rilevato un misterioso eccesso di positroni nello spazio.

I fisici teorici ipotizzano che questo eccesso possa essere il prodotto di particelle di materia oscura che si annichilano mutuamente. Ma anche le particelle pesanti di cui è stata ipotizzata l'esistenza (le cosiddette weakly interacting massive particles, WIMP) dovrebbero decadere in protoni e antiprotoni, che non sono stati osservati da PAMELA. Una particella di materia oscura - o anche di materia "ancora più oscura” come dice Arkani-Hamed — verrebbe osservata solo attraverso un decadimento che coinvolge il
mediatore della forza, il fotone, che produrrebbe positroni ma non antiprotoni.

Un'altra motivazione deriva da un affascinante risultato riportato nel 2004 dai fisici del Brookhaven National Laboratory di Upton, nello Stato di New York. I ricercatori avevano trovato che il momento magnetico creato dallo spin e dalla carica del muone, una particella a vita breve simile all'elettrone, non era in accordo con le previsioni del modello standard. Questa anomalia di spin del muone, chiamata fattore g-2, potrebbe essere corretta da una forza del settore oscuro, ha commentato Arkani-Hamed, il quale inoltre sottolinea che l'idea non sia così folle come potrebbe sembrare. “
Dal punto di vista teorico, l'intero impianto è abbastanza convenzionale e conservativo”, ha sottolineato.

Le previsioni possono essere verificate in modo economico e relativamente veloce. Il fascio principale del Jefferson Lab da sei gigaelettronvolt ha l'energia giusta per testare l'intervallo di energia più probabile per i fotoni pesanti.

Dopo i test di funzionamento di tre settimane, il fascio verrà spento per un aggiornamento che ne raddoppierà l'energia. Ciò permetterà all'HPS e a un altro progetto, l'A Prime EXperiment (APEX), di esplorare altre parti del settore oscuro nel 2015. Un terza proposta, chiamata DarkLight, utilizzerebbe un fascio che guida il laser a elettroni liberi per andare alla ricerca di fotoni pesanti a energie più basse.

Arkani-Hamed spiega che non sarebbe sorpreso se il cammino futuro della fisica delle particelle emergesse da esperimenti modesti come quello del Jefferson Lab, invece che da quelli del CERN. “Questi esperimenti a bassa energia, più piccoli, economici ma innovativi potrebbero effettivamente fornire le prove di una nuova fisica prima dei 'grandi mostri'”


blog comments powered by Disqus

Secondo te prima della nostra c'è stata un altra civiltà?

Wikipedia Affiliate Button
jeux gratuit