Text Size
Giovedì, Giugno 21, 2018
Scienza e Futuro Il Cern riesce a intrappolare l'antimateria per 16 minuti

L'evoluzione dei telescopi, dal cannocchiale allo Spitzer

Lo strumento usato da Galileo per osservare il cielo era un oggetto semplice. Si trattava di un telescopio rifrattore che aveva due lenti ai due estremi di due tubi, di cui uno entrava nell'altro. ...

Le conseguenze parzialmente note sullo spostamernto dell'asse terrestre

Ma di quanto si realmente spostato l’asse terrestre dopo il terremoto in Giappone? Ecco di seguito alcune dichiarazioni raccolte su siti esteri, ad oggi. A) In seguito al terremoto in Giappone si...

Limite dell'Universo Conosciuto

Fin dall'inizio dei tempi l'uomo, scrutando il cielo, si è sempre chiesto quanto effettivamente l'Universo fosse grande.La risposta probabilmete non l'avremo mai, ma,grazie alle notevoli scoperte scie...

Scienziati italiani dimostrano che le piante apprendono e ricordano

LE PIANTE sono in grado di apprendere e di conservare memoria delle informazioni. Lo dimostra per la prima volta un esperimento realizzato al Laboratorio Internazionale di Neurobiologia Vegetale ...

Studio Aperto Live e lo speciale sugli Ufo

UFO: X-Files d'Italia: è il titolo della quinta puntata di Studio Aperto - Live, in onda venerdì 19 novembre alle 23.30. Il programma intraprende un lungo viaggio nel mondo degli oggetti non identi...

Le misteriose impronte di dinosauro e di un uomo che camminavano assieme. Il caso di Paluxy River

L’uomo esisteva già ai tempi dei dinosauri, oltre 65 milioni di anni fa ? La presenza di impronte umane fossilizzate accanto a quelle di dinosauro nel letto calcareo del fiume Paluxy, vicino a Glen...

  • L'evoluzione dei telescopi, dal cannocchiale allo Spitzer


    Publish In: Tecnologia Spaziale
  • Le conseguenze parzialmente note sullo spostamernto dell'asse terrestre


    Publish In: Uomini e Misteri
  • Limite dell'Universo Conosciuto


    Publish In: Tecnologia Spaziale
  • Scienziati italiani dimostrano che le piante apprendono e ricordano


    Publish In: Scienza e Futuro
  • Studio Aperto Live e lo speciale sugli Ufo


    Publish In: Le Prove
  • Le misteriose impronte di dinosauro e di un uomo che camminavano assieme. Il caso di Paluxy River


    Publish In: Oopart Archeomisteri

Il Cern riesce a intrappolare l'antimateria per 16 minuti

Dopo i risultati ottenuti a novembre sempre a Ginevra e ad aprile negli Usa, un altro passo avanti: anti-idrogeno catturato per il tempo record di mille secondi

Cern, atomi di antimateria "intrappolati" per 16 minuti

ROMA - Si sta "stringendo il cerchio" intorno all'antimateria. Nel novembre scorso l'esperimento Alpha del Cern  di Ginevra aveva creato e catturato atomi di anti-idrogeno per 172 millesecondi; in aprile i laboratori statunitensi di Brookhaven hanno creato l'altro anti-elemento  prodotto al momento del Big Bang, l'anti-elio, anche se non sono riusciti a imprigionarlo. Ora, sempre con l'esperimento Alpha, il Cern è riuscito a creare e intrappolare circa 300 atomi di anti-idrogeno per il tempo record di 1.000 secondi (oltre 16 minuti): 5.000 volte più a lungo rispetto al tempo ottenuto dallo stesso esperimento a novembre.

Il risultato, pubblicato nell'edizione online della rivista Nature Physics, permette finalmente di osservare in modo diretto il comportamento dell'antimateria e di verificare se, come prevedono le attuali teorie della fisica, si comporta in modo simmetrico ma opposto rispetto alla materia, come una sorta di "specchio di Alice". Diventa cioè possibile sapere se materia e antimateria obbediscono alle stesse leggi della fisica. "E' un tempo abbastanza lungo per poter cominciare a studiarle", ha osservato il coordinatore dell'esperimento, Jeffrey Hangst, dell'università danese di Aarhus.

Riuscire a intrappolare l'antimateria e a "tenerla ferma" in un tempo sufficiente per studiarla da vicino non è stato affatto semplice: una volta creati, gli atomi di anti-idrogeno sono stati "congelati" e tenuti lontani dalle pareti della "scatola" dell'apparato sperimentale grazie a una trappola fatta di campi elettrici e campi magnetici. Questa gabbia è assolutamente necessaria in quanto è sufficiente un minimo contatto fra materia e antimateria perché queste si distruggano reciprocamente.

"Congratulazioni all'esperimento Alpha" dalla ricercatrice italiana Gemma Testera, alla guida di un altro esperimento del Cern che sta studiando l'antimateria, chiamato Aegis e finanziato dall'Istituto Nazionale di Fisica Nucleare (Infn). "Aver catturato l'antimateria per un periodo così lungo è il punto di partenza per studiarne le proprietà", ha aggiunto commentando l'esperimento, del quale non fa parte nessun italiano. I risultati di queste osservazioni aiuteranno a comprendere meglio molti aspetti della cosmologia e le leggi fondamentali dell'universo. "Vogliamo studiare le proprietà della materia e dell'antimateria - ha detto ancora la ricercatrice - per verificare se si comportano o meno nello stesso modo. L'universo nel quale viviamo è fatto di materia e le attuali leggi della fisica suggeriscono che materia e antimateria sono simili".

Le teorie attuali suggeriscono che materia e antimateria sono state prodotte nella stessa quantità al momento del Big Bang e che si sono annichilite a vicenda. Tuttavia una parte di materia è sopravvissuta all'impatto ed è oggi alla base dell'universo che conosciamo. L'anti-idrogeno intrappolato al Cern adesso potrà aiutare a capire come mai la materia alla fine abbia vinto e che fine possa aver fatto l'antimateria.

Oltre ad Alpha, tre esperimenti del Cern puntano a "mettere alle strette" l'antimateria per rispondere alle domande fondamentali della fisica: l'esperimento Aegis, guidato come detto da Testera e finanziato dall'Istituto Nazionale di Fisica Nucleare (Infn); Atrap (Antihydrogen Trap), a guida statunitense; Asacusa, coordinato dal Giappone. "Sono progetti fra loro in competizione scientifica, ma complementari", spiega Testera.

Obiettivo dell'esperimento Aegis è misurare gli effetti della forza di gravità sull'antimateria. Per riuscire in questo l'esperimento punta a produrre fasci di anti-idrogeno, seguendo la strada aperta dall'esperimento predecessore, Alpha. I primi dati potrebbero arrivare già in estate.

La 'trappola' per l'antimateria usata dall'esperimento Asacusa si chiama Cusp e funziona grazie a una combinazione di campi magnetici che costringono antiprotoni e positroni a stare insieme per formare atomi di anti-idrogeno. Gli anti-atomi così ottenuti vengono incanalati in un sorta di "corridoio" vuoto dove i piccoli fasci di anti-idrogeno creati in questo modo possono essere studiati "in volo".

Con un altro esperimento del Cern chiamato Athena, Atrap ha dimostrato la possibilità di produrre antiparticelle in grandi quantità, facendo il primo passo verso la possibilità di produrre, controllare e infine intrappolare un piccolo frammento dell'antimondo.

Tutti insieme, questi esperimenti contribuiranno a perfezionare le trappole magnetiche nelle quali, a temperature bassissime, diventerà possibile riuscire a rallentare a bloccare gli anti-atomi, fino a intrappolarli per alcune ore.

Fonte: repubblica.it


blog comments powered by Disqus

Secondo te prima della nostra c'è stata un altra civiltà?

Wikipedia Affiliate Button
jeux gratuit