Text Size
Sabato, Febbraio 29, 2020
Scienza e Futuro Il Cern riesce a intrappolare l'antimateria per 16 minuti

Il sistema binario dei record, le ultime immagini di Rosetta e le dimensioni mastodontiche della Via Lattea

Guardatelo. È nell’animazione video qui in fondo, realizzata per l’occasione dagli scienziati del Goddard Space Flight Center della NASA. È un sistema binario, e fin qui nulla di strano: l’univers...

Il triangolo maledetto

Il triangolo delle Bermude, o meno correttamente delle Bermuda, è una zona di mare di forma per l'appunto triangolare. In questa vasta zona di mare, di circa 2.500.000 km2, si sarebbero verificati dal...

Il misterioso caso degli alieni benevoli

Numerosi sono gli incidenti in cui presunti alieni sono considerati responsabili di ogni scelleratezza: dai rapimenti alle mutilazioni animali, dagli esperimenti genetici a forme di possessione, d...

L'attacco alieno avvenuto a Fort Worth in Texas

La base militare in oggetto é quella di Fort Worth, ubicata nello stato del Texas,  e le immagini riprese sono state immortalate lo scorso 11 Maggio 2011 da un fotografo occasionalmente appollaiato...

La prova che in passato siamo stati visitati dagli alieni. L'antica città di Ollantaytambo

Ollantaytambo è un sito archeologico Inca che si trova nel Parù meridionale, nella regione di Cusco, ad un’altitudine di 2792 metri sopra il livello del mare. Le rovine dell’antica città giacc...

Akakor, l'antica città degli Dei

Antichissime città perdute nel cuore delle foreste brasiliane custodiscono segreti legati alla discesa di esseri di altri mondi. L’avventura del giornalista tedesco Karl Brugger ha inizio in un bar ...

  • Il sistema binario dei record, le ultime immagini di Rosetta e le dimensioni mastodontiche della Via Lattea


    Publish In: News Astronomia
  • Il triangolo maledetto


    Publish In: Uomini e Misteri
  • Il misterioso caso degli alieni benevoli


    Publish In: Le Prove
  • L'attacco alieno avvenuto a Fort Worth in Texas


    Publish In: Le Prove
  • La prova che in passato siamo stati visitati dagli alieni. L'antica città di Ollantaytambo


    Publish In: Oopart Archeomisteri
  • Akakor, l'antica città degli Dei


    Publish In: Oopart Archeomisteri

Il Cern riesce a intrappolare l'antimateria per 16 minuti

Dopo i risultati ottenuti a novembre sempre a Ginevra e ad aprile negli Usa, un altro passo avanti: anti-idrogeno catturato per il tempo record di mille secondi

Cern, atomi di antimateria "intrappolati" per 16 minuti

ROMA - Si sta "stringendo il cerchio" intorno all'antimateria. Nel novembre scorso l'esperimento Alpha del Cern  di Ginevra aveva creato e catturato atomi di anti-idrogeno per 172 millesecondi; in aprile i laboratori statunitensi di Brookhaven hanno creato l'altro anti-elemento  prodotto al momento del Big Bang, l'anti-elio, anche se non sono riusciti a imprigionarlo. Ora, sempre con l'esperimento Alpha, il Cern è riuscito a creare e intrappolare circa 300 atomi di anti-idrogeno per il tempo record di 1.000 secondi (oltre 16 minuti): 5.000 volte più a lungo rispetto al tempo ottenuto dallo stesso esperimento a novembre.

Il risultato, pubblicato nell'edizione online della rivista Nature Physics, permette finalmente di osservare in modo diretto il comportamento dell'antimateria e di verificare se, come prevedono le attuali teorie della fisica, si comporta in modo simmetrico ma opposto rispetto alla materia, come una sorta di "specchio di Alice". Diventa cioè possibile sapere se materia e antimateria obbediscono alle stesse leggi della fisica. "E' un tempo abbastanza lungo per poter cominciare a studiarle", ha osservato il coordinatore dell'esperimento, Jeffrey Hangst, dell'università danese di Aarhus.

Riuscire a intrappolare l'antimateria e a "tenerla ferma" in un tempo sufficiente per studiarla da vicino non è stato affatto semplice: una volta creati, gli atomi di anti-idrogeno sono stati "congelati" e tenuti lontani dalle pareti della "scatola" dell'apparato sperimentale grazie a una trappola fatta di campi elettrici e campi magnetici. Questa gabbia è assolutamente necessaria in quanto è sufficiente un minimo contatto fra materia e antimateria perché queste si distruggano reciprocamente.

"Congratulazioni all'esperimento Alpha" dalla ricercatrice italiana Gemma Testera, alla guida di un altro esperimento del Cern che sta studiando l'antimateria, chiamato Aegis e finanziato dall'Istituto Nazionale di Fisica Nucleare (Infn). "Aver catturato l'antimateria per un periodo così lungo è il punto di partenza per studiarne le proprietà", ha aggiunto commentando l'esperimento, del quale non fa parte nessun italiano. I risultati di queste osservazioni aiuteranno a comprendere meglio molti aspetti della cosmologia e le leggi fondamentali dell'universo. "Vogliamo studiare le proprietà della materia e dell'antimateria - ha detto ancora la ricercatrice - per verificare se si comportano o meno nello stesso modo. L'universo nel quale viviamo è fatto di materia e le attuali leggi della fisica suggeriscono che materia e antimateria sono simili".

Le teorie attuali suggeriscono che materia e antimateria sono state prodotte nella stessa quantità al momento del Big Bang e che si sono annichilite a vicenda. Tuttavia una parte di materia è sopravvissuta all'impatto ed è oggi alla base dell'universo che conosciamo. L'anti-idrogeno intrappolato al Cern adesso potrà aiutare a capire come mai la materia alla fine abbia vinto e che fine possa aver fatto l'antimateria.

Oltre ad Alpha, tre esperimenti del Cern puntano a "mettere alle strette" l'antimateria per rispondere alle domande fondamentali della fisica: l'esperimento Aegis, guidato come detto da Testera e finanziato dall'Istituto Nazionale di Fisica Nucleare (Infn); Atrap (Antihydrogen Trap), a guida statunitense; Asacusa, coordinato dal Giappone. "Sono progetti fra loro in competizione scientifica, ma complementari", spiega Testera.

Obiettivo dell'esperimento Aegis è misurare gli effetti della forza di gravità sull'antimateria. Per riuscire in questo l'esperimento punta a produrre fasci di anti-idrogeno, seguendo la strada aperta dall'esperimento predecessore, Alpha. I primi dati potrebbero arrivare già in estate.

La 'trappola' per l'antimateria usata dall'esperimento Asacusa si chiama Cusp e funziona grazie a una combinazione di campi magnetici che costringono antiprotoni e positroni a stare insieme per formare atomi di anti-idrogeno. Gli anti-atomi così ottenuti vengono incanalati in un sorta di "corridoio" vuoto dove i piccoli fasci di anti-idrogeno creati in questo modo possono essere studiati "in volo".

Con un altro esperimento del Cern chiamato Athena, Atrap ha dimostrato la possibilità di produrre antiparticelle in grandi quantità, facendo il primo passo verso la possibilità di produrre, controllare e infine intrappolare un piccolo frammento dell'antimondo.

Tutti insieme, questi esperimenti contribuiranno a perfezionare le trappole magnetiche nelle quali, a temperature bassissime, diventerà possibile riuscire a rallentare a bloccare gli anti-atomi, fino a intrappolarli per alcune ore.

Fonte: repubblica.it


blog comments powered by Disqus

Secondo te prima della nostra c'è stata un altra civiltà?

Wikipedia Affiliate Button
jeux gratuit