Text Size
Giovedì, Giugno 21, 2018
Scienza e Futuro Il Cern riesce a intrappolare l'antimateria per 16 minuti

La strana roccia (lavorata) fotografata su Marte dal Mars Rover Spirit

Durante la missione spaziale su Marte della sonda Mars Rover Spirit è stata fotografata una strana roccia. Questa roccia sembra avere degli angoli perfettamente lavorati e una forma molto artificial...

Nikola Tesla

Negli Stati Uniti Tesla fu tra gli scienziati e inventori più famosi, anche nella cultura popolare. Dopo la sua dimostrazione di comunicazione senza fili (radio) nel 1893, e dopo essere stato il vinci...

L'incredibile scansione del cervello di una donna durante un'OOBE (Out Of Body Experience)

A poco a poco la neuroscienza sta affrontando l'aspetto non locale della coscienza. Questo studio è stato effettuato con un singolo partecipante e quindi non è in alcun modo definitivo, ma, comun...

Due pianeti attorno a due Soli scoperti da Kepler e le molecole di zucchero scoperte nello spazio

Niente paura, il telescopio spaziale Kepler della NASA non ha cominciato a vedere doppio. Specializzato nella ricerca di pianeti extrasolari, ha individuato un sistema planetario molto particolar...

Il tunnel segreto scoperto a Teotihuacan

Nel sito archeologico di Teotihuacan un gruppo di archeologi ha scoperto un tunnel che potrebbe rivelare molti indizi su una delle più importanti civiltà antiche della regione. La prima indicazi...

La nuova vita di Hubble, stella nana in arrivo e niente bombe agli asteroidi

Da quando è stato riparato e aggiornato, Hubble è di nuovo in piena forma e già sta affrontando una nuova sfida: osservare migliaia di galassie lontane per ricostruire le prime fasi della loro ev...

  • La strana roccia (lavorata) fotografata su Marte dal Mars Rover Spirit


    Publish In: Le Prove
  • Nikola Tesla


    Publish In: Uomini e Misteri
  • L'incredibile scansione del cervello di una donna durante un'OOBE (Out Of Body Experience)


    Publish In: Uomini e Misteri
  • Due pianeti attorno a due Soli scoperti da Kepler e le molecole di zucchero scoperte nello spazio


    Publish In: News Astronomia
  • Il tunnel segreto scoperto a Teotihuacan


    Publish In: Oopart Archeomisteri
  • La nuova vita di Hubble, stella nana in arrivo e niente bombe agli asteroidi


    Publish In: News Astronomia

Il Cern riesce a intrappolare l'antimateria per 16 minuti

Dopo i risultati ottenuti a novembre sempre a Ginevra e ad aprile negli Usa, un altro passo avanti: anti-idrogeno catturato per il tempo record di mille secondi

Cern, atomi di antimateria "intrappolati" per 16 minuti

ROMA - Si sta "stringendo il cerchio" intorno all'antimateria. Nel novembre scorso l'esperimento Alpha del Cern  di Ginevra aveva creato e catturato atomi di anti-idrogeno per 172 millesecondi; in aprile i laboratori statunitensi di Brookhaven hanno creato l'altro anti-elemento  prodotto al momento del Big Bang, l'anti-elio, anche se non sono riusciti a imprigionarlo. Ora, sempre con l'esperimento Alpha, il Cern è riuscito a creare e intrappolare circa 300 atomi di anti-idrogeno per il tempo record di 1.000 secondi (oltre 16 minuti): 5.000 volte più a lungo rispetto al tempo ottenuto dallo stesso esperimento a novembre.

Il risultato, pubblicato nell'edizione online della rivista Nature Physics, permette finalmente di osservare in modo diretto il comportamento dell'antimateria e di verificare se, come prevedono le attuali teorie della fisica, si comporta in modo simmetrico ma opposto rispetto alla materia, come una sorta di "specchio di Alice". Diventa cioè possibile sapere se materia e antimateria obbediscono alle stesse leggi della fisica. "E' un tempo abbastanza lungo per poter cominciare a studiarle", ha osservato il coordinatore dell'esperimento, Jeffrey Hangst, dell'università danese di Aarhus.

Riuscire a intrappolare l'antimateria e a "tenerla ferma" in un tempo sufficiente per studiarla da vicino non è stato affatto semplice: una volta creati, gli atomi di anti-idrogeno sono stati "congelati" e tenuti lontani dalle pareti della "scatola" dell'apparato sperimentale grazie a una trappola fatta di campi elettrici e campi magnetici. Questa gabbia è assolutamente necessaria in quanto è sufficiente un minimo contatto fra materia e antimateria perché queste si distruggano reciprocamente.

"Congratulazioni all'esperimento Alpha" dalla ricercatrice italiana Gemma Testera, alla guida di un altro esperimento del Cern che sta studiando l'antimateria, chiamato Aegis e finanziato dall'Istituto Nazionale di Fisica Nucleare (Infn). "Aver catturato l'antimateria per un periodo così lungo è il punto di partenza per studiarne le proprietà", ha aggiunto commentando l'esperimento, del quale non fa parte nessun italiano. I risultati di queste osservazioni aiuteranno a comprendere meglio molti aspetti della cosmologia e le leggi fondamentali dell'universo. "Vogliamo studiare le proprietà della materia e dell'antimateria - ha detto ancora la ricercatrice - per verificare se si comportano o meno nello stesso modo. L'universo nel quale viviamo è fatto di materia e le attuali leggi della fisica suggeriscono che materia e antimateria sono simili".

Le teorie attuali suggeriscono che materia e antimateria sono state prodotte nella stessa quantità al momento del Big Bang e che si sono annichilite a vicenda. Tuttavia una parte di materia è sopravvissuta all'impatto ed è oggi alla base dell'universo che conosciamo. L'anti-idrogeno intrappolato al Cern adesso potrà aiutare a capire come mai la materia alla fine abbia vinto e che fine possa aver fatto l'antimateria.

Oltre ad Alpha, tre esperimenti del Cern puntano a "mettere alle strette" l'antimateria per rispondere alle domande fondamentali della fisica: l'esperimento Aegis, guidato come detto da Testera e finanziato dall'Istituto Nazionale di Fisica Nucleare (Infn); Atrap (Antihydrogen Trap), a guida statunitense; Asacusa, coordinato dal Giappone. "Sono progetti fra loro in competizione scientifica, ma complementari", spiega Testera.

Obiettivo dell'esperimento Aegis è misurare gli effetti della forza di gravità sull'antimateria. Per riuscire in questo l'esperimento punta a produrre fasci di anti-idrogeno, seguendo la strada aperta dall'esperimento predecessore, Alpha. I primi dati potrebbero arrivare già in estate.

La 'trappola' per l'antimateria usata dall'esperimento Asacusa si chiama Cusp e funziona grazie a una combinazione di campi magnetici che costringono antiprotoni e positroni a stare insieme per formare atomi di anti-idrogeno. Gli anti-atomi così ottenuti vengono incanalati in un sorta di "corridoio" vuoto dove i piccoli fasci di anti-idrogeno creati in questo modo possono essere studiati "in volo".

Con un altro esperimento del Cern chiamato Athena, Atrap ha dimostrato la possibilità di produrre antiparticelle in grandi quantità, facendo il primo passo verso la possibilità di produrre, controllare e infine intrappolare un piccolo frammento dell'antimondo.

Tutti insieme, questi esperimenti contribuiranno a perfezionare le trappole magnetiche nelle quali, a temperature bassissime, diventerà possibile riuscire a rallentare a bloccare gli anti-atomi, fino a intrappolarli per alcune ore.

Fonte: repubblica.it


blog comments powered by Disqus

Secondo te prima della nostra c'è stata un altra civiltà?

Wikipedia Affiliate Button
jeux gratuit