Text Size
Martedì, Maggio 30, 2017
Scienza e Futuro Il Cern riesce a intrappolare l'antimateria per 16 minuti

Mingus, la supernova più distante scoperta finora, le nuove stime d'impatto di Apophis e le nuove scoperte di ALMA

Si chiama Mingus, in onore del musicista jazz Charles Mingus, ed è una tra le supernovae più lontane mai scoperte finora. Le supernovae sono stelle che al termine dela loro evoluzione esplodono in...

I numerosi avvistamenti sempre più frequenti in Cina

Eventi di UFO e alieni stanno diventando quotidiani in Cina, provocando il panico tra alcuni cittadini e curiosità in altri. In risposta a questa situazione il governo cinese ha preso l'insolita...

La macchina che legge il pensiero è sempre più vicina

Sembra fantascienza, eppure un team di ricercatori dell'Università di Princeton ha scoperto come usare la risonanza magnetica per capire cosa ti frulla per la testa. Non sono ancora in grado di d...

Il misterioso fantasma senza testa che terrorizza i londinesi

Londra, un monaco senza testa terrorizza i dipendenti di un parco giochi. Forse il terribile fantasma è in cerca di divertimento. Ironia a parte, l'apaprizione dello spettro è stata presa così seri...

Chichen Itza e il mistero della piramide nascosta all'interno i un'altra piramide.

Una piramide nell’altra, e poi un’altra ancora: gli archeologi hanno scoperto che il tempio di Kukulkan, nel sito archeologico di Chichen Itza (nella penisola dello Yucatan) nascondeva un’ulterior...

I poteri della mente: la Telecinesi

La Telecinesi fa parte della numerosa serie di manifestazioni classificate nella parapsicologia, ma si manifesta anche in altri ambiti che non sono sempre naturali:Telecinesi, ovvero muovere la materi...

  • Mingus, la supernova più distante scoperta finora, le nuove stime d'impatto di Apophis e le nuove scoperte di ALMA


    Publish In: News Astronomia
  • I numerosi avvistamenti sempre più frequenti in Cina


    Publish In: Le Prove
  • La macchina che legge il pensiero è sempre più vicina


    Publish In: Scienza e Futuro
  • Il misterioso fantasma senza testa che terrorizza i londinesi


    Publish In: Uomini e Misteri
  • Chichen Itza e il mistero della piramide nascosta all'interno i un'altra piramide.


    Publish In: Oopart Archeomisteri
  • I poteri della mente: la Telecinesi


    Publish In: Uomini e Misteri

Il Cern riesce a intrappolare l'antimateria per 16 minuti

Dopo i risultati ottenuti a novembre sempre a Ginevra e ad aprile negli Usa, un altro passo avanti: anti-idrogeno catturato per il tempo record di mille secondi

Cern, atomi di antimateria "intrappolati" per 16 minuti

ROMA - Si sta "stringendo il cerchio" intorno all'antimateria. Nel novembre scorso l'esperimento Alpha del Cern  di Ginevra aveva creato e catturato atomi di anti-idrogeno per 172 millesecondi; in aprile i laboratori statunitensi di Brookhaven hanno creato l'altro anti-elemento  prodotto al momento del Big Bang, l'anti-elio, anche se non sono riusciti a imprigionarlo. Ora, sempre con l'esperimento Alpha, il Cern è riuscito a creare e intrappolare circa 300 atomi di anti-idrogeno per il tempo record di 1.000 secondi (oltre 16 minuti): 5.000 volte più a lungo rispetto al tempo ottenuto dallo stesso esperimento a novembre.

Il risultato, pubblicato nell'edizione online della rivista Nature Physics, permette finalmente di osservare in modo diretto il comportamento dell'antimateria e di verificare se, come prevedono le attuali teorie della fisica, si comporta in modo simmetrico ma opposto rispetto alla materia, come una sorta di "specchio di Alice". Diventa cioè possibile sapere se materia e antimateria obbediscono alle stesse leggi della fisica. "E' un tempo abbastanza lungo per poter cominciare a studiarle", ha osservato il coordinatore dell'esperimento, Jeffrey Hangst, dell'università danese di Aarhus.

Riuscire a intrappolare l'antimateria e a "tenerla ferma" in un tempo sufficiente per studiarla da vicino non è stato affatto semplice: una volta creati, gli atomi di anti-idrogeno sono stati "congelati" e tenuti lontani dalle pareti della "scatola" dell'apparato sperimentale grazie a una trappola fatta di campi elettrici e campi magnetici. Questa gabbia è assolutamente necessaria in quanto è sufficiente un minimo contatto fra materia e antimateria perché queste si distruggano reciprocamente.

"Congratulazioni all'esperimento Alpha" dalla ricercatrice italiana Gemma Testera, alla guida di un altro esperimento del Cern che sta studiando l'antimateria, chiamato Aegis e finanziato dall'Istituto Nazionale di Fisica Nucleare (Infn). "Aver catturato l'antimateria per un periodo così lungo è il punto di partenza per studiarne le proprietà", ha aggiunto commentando l'esperimento, del quale non fa parte nessun italiano. I risultati di queste osservazioni aiuteranno a comprendere meglio molti aspetti della cosmologia e le leggi fondamentali dell'universo. "Vogliamo studiare le proprietà della materia e dell'antimateria - ha detto ancora la ricercatrice - per verificare se si comportano o meno nello stesso modo. L'universo nel quale viviamo è fatto di materia e le attuali leggi della fisica suggeriscono che materia e antimateria sono simili".

Le teorie attuali suggeriscono che materia e antimateria sono state prodotte nella stessa quantità al momento del Big Bang e che si sono annichilite a vicenda. Tuttavia una parte di materia è sopravvissuta all'impatto ed è oggi alla base dell'universo che conosciamo. L'anti-idrogeno intrappolato al Cern adesso potrà aiutare a capire come mai la materia alla fine abbia vinto e che fine possa aver fatto l'antimateria.

Oltre ad Alpha, tre esperimenti del Cern puntano a "mettere alle strette" l'antimateria per rispondere alle domande fondamentali della fisica: l'esperimento Aegis, guidato come detto da Testera e finanziato dall'Istituto Nazionale di Fisica Nucleare (Infn); Atrap (Antihydrogen Trap), a guida statunitense; Asacusa, coordinato dal Giappone. "Sono progetti fra loro in competizione scientifica, ma complementari", spiega Testera.

Obiettivo dell'esperimento Aegis è misurare gli effetti della forza di gravità sull'antimateria. Per riuscire in questo l'esperimento punta a produrre fasci di anti-idrogeno, seguendo la strada aperta dall'esperimento predecessore, Alpha. I primi dati potrebbero arrivare già in estate.

La 'trappola' per l'antimateria usata dall'esperimento Asacusa si chiama Cusp e funziona grazie a una combinazione di campi magnetici che costringono antiprotoni e positroni a stare insieme per formare atomi di anti-idrogeno. Gli anti-atomi così ottenuti vengono incanalati in un sorta di "corridoio" vuoto dove i piccoli fasci di anti-idrogeno creati in questo modo possono essere studiati "in volo".

Con un altro esperimento del Cern chiamato Athena, Atrap ha dimostrato la possibilità di produrre antiparticelle in grandi quantità, facendo il primo passo verso la possibilità di produrre, controllare e infine intrappolare un piccolo frammento dell'antimondo.

Tutti insieme, questi esperimenti contribuiranno a perfezionare le trappole magnetiche nelle quali, a temperature bassissime, diventerà possibile riuscire a rallentare a bloccare gli anti-atomi, fino a intrappolarli per alcune ore.

Fonte: repubblica.it


blog comments powered by Disqus

Secondo te prima della nostra c'è stata un altra civiltà?

Wikipedia Affiliate Button
jeux gratuit