Text Size
Mercoledì, Giugno 03, 2020
Scienza e Futuro Il Cern riesce a intrappolare l'antimateria per 16 minuti

L'acqua dei pianeti solitari vaganti, l'alternativa alla materia oscura e il nuovo telescopio JAMES WEBB

Pianeti solitari che vagano nella nostra galassia. Non sappiamo se esistono ma in teoria nulla vieta che un pianeta venga strappato dal suo sistema solare, ad esempio perché spinto via dalle pertur...

L'incredibile immagine del 1968 di un Ufo gigante nascosto sulla Luna

In una incredibile immagine, scattata dal satellite Lunar Orbiter 3 sulla Luna nel 1968 ci sono delle vere sorprese, infatti nella foto in questione consultabile nel sito ufficiale qui, http://www.l...

La base sotterranea di Dulce e l'incredibile scontro a fuoco contro gli alieni

Secondo gli ufologi che sostengono la sua esistenza, questa base sotterranea fungerebbe da guscio, per nascondere una cooperazione tra l’esercito statunitense e inglese e alcune razze aliene. Non è ...

Gobekli Tepe, il tempio più antico costruito dall'uomo 8000 anni prima delle piramidi

Göbekli Tepe è un sito archeologico presso la città di Şanlıurfa nell'odierna Turchia, presso il confine con la Siria, risalente all'inizio del Neolitico, (Neolitico preceramico A) o alla fine de...

Un altro passo verso l'immortalità. Topi di laboratorio ringiovaniti artificialmente

Il tempo è tornato indietro, per un gruppo di topolini del Salk Insitute in California. Dopo essere diventati anziani, gli scienziati sono riusciti a farli ringiovanire. L’estensione della loro v...

Il misterioso ufo in modalità invisibile filmato a Tulum in Messico

Un Ufo in modalità invisibile è stato filmato a Tulum, in Messico vicino all'antico castello. L'avvistamento in questione è avvenuto in modo singolare in quanto due turisti, che stavano visitando il...

  • L'acqua dei pianeti solitari vaganti, l'alternativa alla materia oscura e il nuovo telescopio JAMES WEBB


    Publish In: News Astronomia
  • L'incredibile immagine del 1968 di un Ufo gigante nascosto sulla Luna


    Publish In: Le Prove
  • La base sotterranea di Dulce e l'incredibile scontro a fuoco contro gli alieni


    Publish In: Le Prove
  • Gobekli Tepe, il tempio più antico costruito dall'uomo 8000 anni prima delle piramidi


    Publish In: Oopart Archeomisteri
  • Un altro passo verso l'immortalità. Topi di laboratorio ringiovaniti artificialmente


    Publish In: Scienza e Futuro
  • Il misterioso ufo in modalità invisibile filmato a Tulum in Messico


    Publish In: Le Prove

Il Cern riesce a intrappolare l'antimateria per 16 minuti

Dopo i risultati ottenuti a novembre sempre a Ginevra e ad aprile negli Usa, un altro passo avanti: anti-idrogeno catturato per il tempo record di mille secondi

Cern, atomi di antimateria "intrappolati" per 16 minuti

ROMA - Si sta "stringendo il cerchio" intorno all'antimateria. Nel novembre scorso l'esperimento Alpha del Cern  di Ginevra aveva creato e catturato atomi di anti-idrogeno per 172 millesecondi; in aprile i laboratori statunitensi di Brookhaven hanno creato l'altro anti-elemento  prodotto al momento del Big Bang, l'anti-elio, anche se non sono riusciti a imprigionarlo. Ora, sempre con l'esperimento Alpha, il Cern è riuscito a creare e intrappolare circa 300 atomi di anti-idrogeno per il tempo record di 1.000 secondi (oltre 16 minuti): 5.000 volte più a lungo rispetto al tempo ottenuto dallo stesso esperimento a novembre.

Il risultato, pubblicato nell'edizione online della rivista Nature Physics, permette finalmente di osservare in modo diretto il comportamento dell'antimateria e di verificare se, come prevedono le attuali teorie della fisica, si comporta in modo simmetrico ma opposto rispetto alla materia, come una sorta di "specchio di Alice". Diventa cioè possibile sapere se materia e antimateria obbediscono alle stesse leggi della fisica. "E' un tempo abbastanza lungo per poter cominciare a studiarle", ha osservato il coordinatore dell'esperimento, Jeffrey Hangst, dell'università danese di Aarhus.

Riuscire a intrappolare l'antimateria e a "tenerla ferma" in un tempo sufficiente per studiarla da vicino non è stato affatto semplice: una volta creati, gli atomi di anti-idrogeno sono stati "congelati" e tenuti lontani dalle pareti della "scatola" dell'apparato sperimentale grazie a una trappola fatta di campi elettrici e campi magnetici. Questa gabbia è assolutamente necessaria in quanto è sufficiente un minimo contatto fra materia e antimateria perché queste si distruggano reciprocamente.

"Congratulazioni all'esperimento Alpha" dalla ricercatrice italiana Gemma Testera, alla guida di un altro esperimento del Cern che sta studiando l'antimateria, chiamato Aegis e finanziato dall'Istituto Nazionale di Fisica Nucleare (Infn). "Aver catturato l'antimateria per un periodo così lungo è il punto di partenza per studiarne le proprietà", ha aggiunto commentando l'esperimento, del quale non fa parte nessun italiano. I risultati di queste osservazioni aiuteranno a comprendere meglio molti aspetti della cosmologia e le leggi fondamentali dell'universo. "Vogliamo studiare le proprietà della materia e dell'antimateria - ha detto ancora la ricercatrice - per verificare se si comportano o meno nello stesso modo. L'universo nel quale viviamo è fatto di materia e le attuali leggi della fisica suggeriscono che materia e antimateria sono simili".

Le teorie attuali suggeriscono che materia e antimateria sono state prodotte nella stessa quantità al momento del Big Bang e che si sono annichilite a vicenda. Tuttavia una parte di materia è sopravvissuta all'impatto ed è oggi alla base dell'universo che conosciamo. L'anti-idrogeno intrappolato al Cern adesso potrà aiutare a capire come mai la materia alla fine abbia vinto e che fine possa aver fatto l'antimateria.

Oltre ad Alpha, tre esperimenti del Cern puntano a "mettere alle strette" l'antimateria per rispondere alle domande fondamentali della fisica: l'esperimento Aegis, guidato come detto da Testera e finanziato dall'Istituto Nazionale di Fisica Nucleare (Infn); Atrap (Antihydrogen Trap), a guida statunitense; Asacusa, coordinato dal Giappone. "Sono progetti fra loro in competizione scientifica, ma complementari", spiega Testera.

Obiettivo dell'esperimento Aegis è misurare gli effetti della forza di gravità sull'antimateria. Per riuscire in questo l'esperimento punta a produrre fasci di anti-idrogeno, seguendo la strada aperta dall'esperimento predecessore, Alpha. I primi dati potrebbero arrivare già in estate.

La 'trappola' per l'antimateria usata dall'esperimento Asacusa si chiama Cusp e funziona grazie a una combinazione di campi magnetici che costringono antiprotoni e positroni a stare insieme per formare atomi di anti-idrogeno. Gli anti-atomi così ottenuti vengono incanalati in un sorta di "corridoio" vuoto dove i piccoli fasci di anti-idrogeno creati in questo modo possono essere studiati "in volo".

Con un altro esperimento del Cern chiamato Athena, Atrap ha dimostrato la possibilità di produrre antiparticelle in grandi quantità, facendo il primo passo verso la possibilità di produrre, controllare e infine intrappolare un piccolo frammento dell'antimondo.

Tutti insieme, questi esperimenti contribuiranno a perfezionare le trappole magnetiche nelle quali, a temperature bassissime, diventerà possibile riuscire a rallentare a bloccare gli anti-atomi, fino a intrappolarli per alcune ore.

Fonte: repubblica.it


blog comments powered by Disqus

Secondo te prima della nostra c'è stata un altra civiltà?

Wikipedia Affiliate Button
jeux gratuit